论文:Distilling the Knowledge in a Neural Network

作者:Geoffrey Hitton;Orial Vinyals;Jeff Dean


看得不是很懂,先留个坑,说个大意。


标题就很好地解释了这篇论文是来干嘛的,重点是Distill,萃取,针对的是Neural Network,但是在文章的前2/3并没有看到怎么是面向Neual Network的,整个标题:如何从Neural Network中萃取知识?先只说说我看的前面2/3的部分。

众所周知,将不同的模型进行融合一般都是可以提高泛化能力的[],然而融合出来的模型过于复杂,有没有一个对应的简单地模型呢。即如何从一个复杂的模型萃取出一个性能接近的简单模型呢?首先我的疑问肯定是这样做有什么好处,既然已经得到了复杂的模型,参数都已经学好,为什么还要多此一举进行萃取--distill呢?嗯,文章中说是为了提高预测时的效率,但我的疑惑仍在:进行萃取--distill的成本可以换回预测时节省的成本吗?

mark 1: 类别概率可以反映很重要的信息。例如下面这个例子:




mark 2:softmax 是将类别转化成概率的输出,在其中加上温度T的表示,T越大,概率分布越柔和:



将神经网络的知识进行提取,是一种将模型的信息转化为更为简洁和易于理解形式的过程。 神经网络是一种由许多神经元组成的复杂计算模型,它们通过学习和调整权重来解决各种问题。然而,神经网络通常具有大量的参数和复杂的结构,这使得它们难以解释和应用到其他领域。因此,我们需要一种方法来提取和总结神经网络的知识,以便更好地理解和应用这些模型。 在进行神经网络知识提取时,有几种常见的方法。一种常见的方法是使用可视化技术,如热力图、激活图和网络结构图等,来可视化网络不同层的活动模式。这些可视化技术能够帮助我们发现网络的模式和特征,并从推断出网络的知识。 另一种方法是使用特征提取技术,如卷积神经网络(CNN)的滤波器、自动编码器的隐藏层和循环神经网络(RNN)的隐状态等,来提取网络学习到的重要特征。这些重要特征可以帮助我们更好地理解网络学习到的信息,并将其应用到其他问题。 此外,还有一种被称为知识蒸馏的技术,它通过训练一个较小的模型来提取大型模型的知识。知识蒸馏通过引入目标函数和额外的训练策略,使小模型能够学习到大模型的重要知识,并在不损失太多性能的情况下将其应用到实际问题。 总而言之,提取神经网络的知识是一项重要任务,它能够帮助我们更好地理解和应用这些复杂的模型。通过可视化、特征提取和知识蒸馏等方法,我们能够从神经网络提取出有用的信息,并将其应用到其他领域或解决其他问题
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值