基于元学习的水声正交时频空间通信自适应调制编码

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


一、研究背景

UWA 信道具有高动态特性,固定调制编码方案难以实现高效长期传输,尤其是在移动 UWA 通信中。自适应调制编码技术虽能跟踪信道动态选择方案,但 UWA 信道特性使建立通用模型困难,现有方法如利用信噪比(SNR)或其他特征选择调制编码方案(MCS)存在局限性,且移动 UWA 通信面临时变信道下建立可靠通信和频繁切换 MCS 导致资源消耗大的问题。
正交时频空间(OTFS)调制被提出用于高速移动无线通信,在时变信道中性能优于正交频分复用(OFDM),已有研究对其进行改进如采用自动编码器(AE)或深度学习(DL)方法。基于此,本文提出基于 OTFS 的 AMC 方案

二、建立模型

1.OTFS调制

发送端:在基于 OTFS 的点对点 UWA 通信系统中,对于第p次传输,二进制信息先以速率 r(p)(来自有限信道编码速率集R(c))编码,然后交织并映射为M§阶 PSK 符号(M§来自有限离散调制阶数集M)。数据符号在延迟 - 多普勒(DD)域传输,星座符号映射为二维MxM符号矩阵x[k,l]并放置在 DD 域晶格T上。接着通过逆辛有限傅里叶变换(ISFFT)将 DD 域信号映射为MN个时频域样本,最后经海森堡变换生成时域信号x(t),添加循环前缀(CP)后发送到 UWA 信道。
接收端:接收端去除 CP 后将接收信号矢量化为矩阵,通过维格纳变换和辛有限傅里叶变换(SFFT)将时域信号转换到 DD 域,给出了 DD 域输入 - 输出关系公式,其中涉及信道

在这里插入图片描述、噪声在这里插入图片描述及相关系数在这里插入图片描述在这里插入图片描述

2.模型的核心内容

模式索引与 MCS 表示:为了便于处理和表示不同的调制编码方案(MCS),论文中定义了模式索引q,其取值范围是从1到Q(在这里插入图片描述
,其中是有限信道编码速率集
在这里插入图片描述
中的元素个数,O是有限离散调制阶数集在这里插入图片描述

中的元素个数)。通过这种方式,每一个q值都唯一对应一种特定的 MCS 组合,例如特定的编码速率和调制阶数的组合。这样在后续的分析和处理中,可以方便地用来指代不同的 MCS,使得整个系统的表述更加简洁和清晰,便于进行数学建模和优化计算。
BER 与 MCS 和信道的关系(通过蒙特卡罗模拟近似):误比特率(BER)e(p)在通信系统中是一个关键性能指标,它被表示为q(即 MCS)和信道h(p)的函数,记为
在这里插入图片描述

。然而,由于 UWA 信道的复杂性,并没有一个简单的封闭形式的表达式来

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值