拉格朗日对偶性(Lagrange duality)

有时候原问题 (Primal Problem) 不太好解,但是对偶问题 (Dual Problem) 却很好解,我们就可以通过求解对偶问题来迂回地解答原问题。

通过下面两步,构造拉格朗日函数为:
1.引入 松弛变量 / KKT乘子μj(μj≥0),把不等式约束条件转化为等式约束条件。
2.入拉格朗日乘子λk把等式约束转化为无约束优化问题
在这里插入图片描述
定义拉格朗日对偶函数为拉格朗日函数把λ,μ当作常数,关于x取最小值得到的函数:
在这里插入图片描述
它一定是凹函数。
那么为什么拉格朗日对偶函数一定是凹函数?
证明: http://mp.blog.csdn.net/mdeditor
原问题是最小化f(x),显然f(x)>=L
假设f∗是满足原问题约束下的最优解,那么:
在这里插入图片描述
g(λ,μ)是原问题最优解的下界。
找下界当然是要找最大的下界,所以导出拉格朗日对偶问题:
在这里插入图片描述
由于g(λ,μ)一定是凹函数,所以拉格朗日对偶问题一定是凸优化问题。
原问题的关于x的最小化转化为了对偶问题关于λ,μ的最大化。

交换以后的新问题是原始问题的对偶问题,这个新问题的最优值用d* 来表示。而且d*<=p*。我们关心的是d=p的时候,这才是我们要的解。需要什么条件才能让d=p呢?
首先必须满足这个优化问题是凸优化问题。
其次,需要满足KKT条件。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值