英伟达(NVIDIA)数据中心GPU介绍

英伟达(NVIDIA)数据中心GPU按性能由高到低排行:

1. NVIDIA H100

架构:Hopper
核心数量:18352 CUDA Cores, 1456 Tensor Cores
显存:80 GB HBM3
峰值性能:

  • 单精度(FP32):60 TFLOPS
  • 双精度(FP64):30 TFLOPS
  • Tensor Core:1000 TFLOPS (混合精度)
  • 应用场景:H100是为下一代AI和HPC应用设计的,提供极高的计算密度和效率,是目前英伟达最强大的数据中心GPU。

2. NVIDIA A100

架构:Ampere
核心数量:6912 CUDA Cores, 432 Tensor Cores
显存:40 GB 或 80 GB HBM2e
峰值性能:

  • 单精度(FP32):19.5 TFLOPS
  • 双精度(FP64):9.7 TFLOPS
  • Tensor Core:312 TFLOPS (混合精度)
  • 应用场景:高性能计算(HPC)、深度学习训练和推理、大数据分析。A100在其发布时是市场上最强大的数据中心GPU,但现在被H100所超越。

3. NVIDIA V100

架构:Volta
核心数量:5120 CUDA Cores, 640 Tensor Cores
显存:16 GB 或 32 GB HBM2
峰值性能:

  • 单精度(FP32):15.7 TFLOPS
  • 双精度(FP64):7.8 TFLOPS
  • Tensor Core:125 TFLOPS (混合精度)
  • 应用场景:深度学习训练、高性能计算、科学计算。V100是许多AI研究机构和企业的首选。

4. NVIDIA A40

架构:Ampere
核心数量:10752 CUDA Cores, 336 Tensor Cores
显存:48 GB GDDR6
峰值性能:

  • 单精度(FP32):37.4 TFLOPS
  • 双精度(FP64):N/A
  • Tensor Core:300 TFLOPS (混合精度)
  • 应用场景:视觉计算、虚拟化工作站、AI推理等。A40在图形和AI推理性能方面表现优异。

5. NVIDIA T4

架构:Turing
核心数量:2560 CUDA Cores, 320 Tensor Cores
显存:16 GB GDDR6
峰值性能:

  • 单精度(FP32):8.1 TFLOPS
  • 双精度(FP64):0.25 TFLOPS
  • Tensor Core:65 TFLOPS (混合精度)
  • 应用场景:AI推理、图形处理、虚拟桌面基础设施(VDI)。T4以其高效的能耗比广受欢迎。

总结

  • 顶级性能:H100 和 A100代表了当前数据中心GPU的顶尖性能,适用于最苛刻的计算任务。
  • 高性能/成本比:V100 和 A40在性能与成本之间达到了良好的平衡,适用于广泛的应用场景。
  • 高效能耗比:T4适用于能耗敏感的应用场景,尤其是在推理和图形处理方面表现出色。
### NVIDIA 计算型 GPU 型号列表 NVIDIA 提供了一系列专为高性能计算设计的 GPU,这些设备广泛应用于科学计算、机器学习、数据分析等领域。以下是部分主流的计算型 GPU 型号: #### Tesla 系列 Tesla 是 NVIDIA 早期推出的专注于加速计算的产品线。 - **K80**: 双 GK210 芯片, 支持 CUDA Compute Capability 3.7[^2] - **P100**: 单颗 Pascal 架构 GP100 芯片, 支持 NVLink 技术, CUDA Compute Capability 6.0 #### Quadro 系列 Quadro 主要面向专业图形处理领域,但也具备强大的计算性能。 - **RTX A6000**: GA102 Ampere 架构核心, CUDA Cores 数量达到 10752 个, Tensor Core 达到 336 个 - **GV100 (Volta)**: GV100 Volta 架构核心, 配备 5120 个 CUDA 核心以及 640 个 Tensor Core #### DGX 系列 DGX 系列为深度学习优化的一体机解决方案,内置多张顶级计算卡。 - **DGX A100**: 搭载八块 A100 PCIe 显卡, 总计拥有 40GB 或者 80GB HBM2E 显存容量选项, CUDA Cores 和 Tensor Cores 的数量非常可观 #### 数据中心级产品 针对大规模数据中心部署而设计的专业级别显卡。 - **A100**: 安培架构旗舰款, 支持第三代 TensorCore 技术, FP32 吞吐量高达 19.5 TFLOPS - **V100S**: Volta 架构升级版 V100, 在原有基础上进一步提升了单精度浮点运算能力和内存带宽 对于希望从事科学研究或企业级应用开发的人来说,上述列举出来的几类 GPU 将会是非常不错的选择。每一代新产品都会带来更高效的并行处理能力与更低能耗表现。 ```python # Python 示例代码展示如何获取当前系统中的 NVIDIA GPU 设备信息 import nvidia_smi nvidia_smi.nvmlInit() handle = nvidia_smi.nvmlDeviceGetHandleByIndex(0) info = nvidia_smi.nvmlDeviceGetMemoryInfo(handle) print(f'GPU Memory Usage:') print(f'Total : {info.total}') print(f'Free : {info.free}') print(f'Used : {info.used}') nvidia_smi.nvmlShutdown() ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值