论文笔记-MSFM: Multi-scale Fusion Module for Object Detection

本文介绍了一种多尺度融合模块(MSFM)用于目标检测,旨在协调定位和分类两个子任务。MSFM能从单一输入中提取细节和语义信息,并在不同尺度上处理,提高检测器的健壮性。该模块轻量级且可作为现有检测框架的插入层。
摘要由CSDN通过智能技术生成

论文阅读计划的第15天

一、研究背景

目标检测要求检测器使用边界框定位图像中的对象,并为每个对象分配正确的类别。目标检测的关键挑战之一是协调解决两个子任务,即定位和分类。定位要求网络准确捕捉对象的位置,而分类则要求网络提取对象的语义信息。

特征融合有利于双重目标检测任务。一方面,当来自浅层和深层的高分辨率和低分辨率特征被融合时,细节和位置信息可以与语义信息相结合。另一方面,可以在不同的尺度上检测对象,提高了框架的健壮性。

二、研究内容

本文提出了一个多尺度融合模块(MSFM),它从一个单一的输入中提取细节和语义信息,但在同一层不同的尺度。具体来说,模块的输入将被调整到不同的比例,在这些比例上,位置和语义信息将被处理,然后它们将被重新缩放并与模块输入相结合。MSFM是轻量级的,可以用作许多现有对象检测框架的插入层。

三、研究方法

在这里插入图片描述
MSFM公式:
在这里插入图片描述
每个分支的计算:
在这里插入图片描述
多位置的消融实验:
在这里插入图片描述

模型参数的优越性:
在这里插入图片描述

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值