论文标题:
Exploration of Multi-Scale Image Fusion Systems in Intelligent Medical Image Analysis
引言
在现代医学影像分析中,多尺度图像融合逐渐成为提升诊断效率的重要工具。特别是在脑肿瘤的诊断中,自动分割技术的应用可以极大减少人为误差。本文旨在通过整合多种深度学习方法,尤其是基于U-Net的网络架构,探索如何提升医疗影像的分割精度。
问题背景及相关工作
在当今的医学影像领域,深度学习技术已经成为推动医学诊断技术进步的中坚力量。特别是在脑肿瘤的诊断中,多尺度图像融合技术的应用为提高诊断精度提供了新的思路。近年来,U-Net网络架构因其在图像分割任务中的优异表现而备受瞩目。在此基础上,许多研究者探索了如何通过结合其他网络模块(如ResNet残差网络)来提升分割效果。🤨
研究目标
本文旨在构建一种结合U-Net与_残差网络_的_脑肿瘤边界提取算法_。具体目标包括:
1. 提高脑肿瘤MRI图像的分割精度。
2. 通过多尺度信息融合,实现_脑肿瘤的三维重建_。
3. 优化网络架构以减少计算复杂度。
Fig. 1. Improved multi-source information fusion network based on U-net
核心设计
文章提出了一种改进的_多源信息融合网络_,其主要特点包括:
1. 网络架构设计
网络分为_压缩通道_和_扩展通道_,通过引入_ResNet块_和_快捷连接_来增强特征传递。
2. 信息增强模块
利用_上下文增强模块_和_空洞卷积池化金字塔_来提升多尺度信息融合的效果。
Fig. 3. Context enhancement module
Fig. 4. Convolution pool pyramid of empty space
3. 解码器设计
解码器通过_反卷积_和_上采样_技术,实现图像的高分辨率特征恢复。
Fig. 5. Decoder modulep
这些设计为实现高精度、低复杂度的_脑肿瘤分割_提供了坚实的基础。
数据准备
本研究采用了美国国家癌症研究所资助的_肿瘤遗传图谱_中的医学影像数据。
共选择了110名患者的900张图像作为训练样本,90张图像作为测试样本。这些数据通过_链接数据方法_进行处理,确保了跨数据集的互操作性。
数据处理的精细化不仅提升了模型的训练效率,也为后续的实验提供了保障。这一数据准备过程可以说是“万事俱备,只欠东风”的完美诠释。
实验结果
在实验中,本文使用了来自国家癌症研究所资助的肿瘤遗传图谱的医学影像数据。共选取了110名TCGA患者,并对他们的液体衰减反转序列和全基因组聚类进行了处理。900张图像被用作训练样本,90张图像被用作测试样本。
Fig. 6. Experimental results
实验结果表明,与传统的U-net和ResU-net相比,本文的方法不仅在准确性(ACC)、曲线下面积(AUC)和敏感性(Sen)方面有所提高,而且在学习效率上也有显著的改善。具体的定量结果如下:
*表格超出部分左右可以滑动
Method | U-net | Res U-net | Proposed Method |
---|---|---|---|
ACC | 0.9645 | 0.9649 | 0.9669 |
AUC | 0.8142 | 0.8444 | 0.8477 |
Sen | 0.9879 | 0.9890 | 0.9893 |
总结与未来展望
本文提出了一种基于残差U-Net的网络架构,通过跳跃连接实现上下层数据的连接,并引入了背景编码(CE)和空洞空间金字塔池化(ASPP)模块来增强背景信息的理解。这种增强有望显著提高模型的认知性能。实验结果表明,该方法在脑胶质瘤的边缘检测和分割上取得了有效的效果,能够高效融合多层数据。未来,本文方法在更广泛的临床医学图像分割上具有显著潜力。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。