在计算机视觉领域,DETR(DEtection TRansformer)模型,由Facebook推出,已成为一项具有革命性的技术。DETR-ResNet-50作为一种结合了Transformer和ResNet-50骨干网络的端到端目标检测模型,凭借其出色的性能和创新的设计,迅速在AI社区中获得了广泛关注和认可,至今已有756个点赞。
模型地址:https://huggingface.co/facebook/detr-resnet-50
什么是DETR?
DETR(DEtection TRansformer)是一种基于Transformer架构的目标检测模型,旨在解决传统卷积神经网络(CNN)在目标检测中的一些局限性。与传统目标检测方法依赖区域提议网络(RPN)不同,DETR通过将图像分割成固定数量的“对象查询”来进行目标识别。这些查询类似于图像中的“潜在对象”,每个查询通过Transformer的编码器-解码器结构与图像中的特征相结合,从而实现对目标的定位和分类。
模型结构
DETR-ResNet-50模型采用了Transformer编码器-解码器结构,并结合了卷积神经网络(CNN)作为其骨干网络。具体来说:
编码器:负责从输入图像中提取特征,使用ResNet-50作为卷积骨干网络。
解码器:通过自注意力机制,将图像特征与对象查询进行匹配。每个对象查询代表一个潜在的目标,它将与图像中的特征进行交互,输出预测的目标类别和边界框。
检测头:在解码器的输出上添加了两个头,一个用于预测目标类别(通过线性层),另一个用于预测边界框(通过多层感知机,MLP)。
训练方法
DETR模型采用了二分匹配损失,这意味着它通过将模型预测的类别和边界框与真实标签进行比较来优化模型。具体来说,模型使用匈牙利算法来实现最优的一对一匹配,然后通过交叉熵损失(用于类别)和L1损失与广义IoU损失(用于边界框)来更新模型参数。
如何使用DETR-ResNet-50
DETR-ResNet-50模型提供了简单的接口,可以方便地用于目标检测任务。以下是一个典型的使用示例:
from transformers import DetrImageProcessor, DetrForObjectDetection
import