ComfyUI,BEN,InSpyreNet,BiRefNet-v2.0,RMBG-v2.0 抠图比武打擂台,谁强谁弱拉出来遛遛就知道了

在之前的文章介绍了几款抠图模型在ComfyUI中的使用:

今天再为大家介绍一款抠图模型:BEN,同时综合比较前面几款:InSpyreNetBiRefNet2RMBG2.0,看看怎么选择。

BEN 介绍

BEN - 背景擦除网络。

BEN 是一种深度学习模型,旨在自动去除图像中的背景,生成蒙版和前景图像。

image.png

模型地址: https://huggingface.co/PramaLLC/BEN

ComfyUI BEN 插件安装

目前开源的BEN Comfyui实现有如下插件:

  • • https://github.com/chflame163/ComfyUI_LayerStyle 推荐,集成了BENBiRefNet2.0InspyreNetRMBG2.0。但是安装有些困难。
  • • https://github.com/lldacing/ComfyUI_BEN_ll 插件简单,支持BEN,本文使用该插件以及LayerStyle
  • • https://github.com/DoctorDiffusion/ComfyUI-BEN/ 插件简单,支持BEN

对于chflame163/ComfyUI_LayerStyle 插件的安装,参考官方中文Github,上面提供了详细的安装方式和常见错误解决方法。

https://github.com/chflame163/ComfyUI_LayerStyle/blob/main/README_CN.MD#%E5%AE%89%E8%A3%85%E6%96%B9%E6%B3%95

这里不再赘述。

lldacing/ComfyUI_BEN_ll 插件的安装,该插件还未收录到Manager,需要通过Git地址安装。

# 安装插件
cd comfyui/custom_nodes
git clone https://github.com/lldacing/ComfyUI_Ben_ll.git
cd ComfyUI_Ben_ll
# 安装依赖
pip install -r requirements.txt
# 重启 ComfyUI

模型下载

国外: https://huggingface.co/PramaLLC/BEN/resolve/main/BEN_Base.pth?download=true

国内: https://hf-mirror.com/PramaLLC/BEN/resolve/main/BEN_Base.pth?download=true

下载后放到:ComfyUI/models/rembg/ben/ 目录,为了让LayerStyle 插件和该插件共享相同的BEN模型,需要如下命令:

cd `ComfyUI/models
# 假设 BEN 模型存放在ComfyUI/models/rembg/ben/ 目录内

mklink /d BEN ".\rembg\ben"

BEN 工作流

image.png

上图用了LayerStyle 中的Ben Ultra 节点和ComfyUI-ben-ll 节点。大家可以二选一。

BEN,InSpyreNet,BiRefNet2,RMGB2.0 抠图比拼

对比工作流

image.png

如果提示OOM,请再次运行即可。

对比效果

  1. 1. 人物1-对比效果

comfyui_01500.png

就本测试图而言:对于头发丝的把控,RMBG2.0,BiRefNet2.0,BEN 效果都很好,而反观InSpyReNet 效果稍差一些。 对于主体而言:BiRefNet2.0,InSpyReNet则侧重人物,抠图只抠出了人物,没有椅子。而RMBG2.0BEN更侧重前景,包括了人物和椅子。

  1. 1. 人物2-对比效果

comfyui_01502.png

就本测试图而言:效果最好的还是BiRefNet2.0RMBG2.0InSpyReNet紧随其后,BEN稍差。

  1. 1. 背景前景相似-对比效果

comfyui_01501.png

就本测试图而言:对于准确性来说,BiRefNet2.0当之无愧,BENInSpyReNet紧随其手,RMBG2.0稍差。

  1. 1. 人物3,复杂-对比效果

comfyui_01503.png

效果不相上下。

  1. 1. 人物4,不同主体-对比效果

comfyui_01504.png

就本测试图而言:BiRefNet2.0InSpyReNet 更侧重人物本身,效果最好,BEN 更侧重前景,BiRefNet2.0 把桌子给劈成了两半。

总结

就笔者感官而言:

  • • 就人物抠图推荐用:BiRefNet2.0InSpyReNet,对于前景抠图推荐用BEN
  • • 就准确性来说:推荐BiRefNet2.0,当然速度也是最慢的。
  • • 对于速度快,准确度也还差不多的,推荐用RMBG2.0BEN

请选择你们常用的抠图工具吧。

评论区说出你选择它的理由吧。

所需工作流请关注公主好:DevOpsAigc云时代

发送指令:抠图对比工作流

自助获取。

也可以通过哩咘获取此工作流:

https://www.liblib.art/modelinfo/639d6200cb3f41579aca694301fbd0d1

### BiRefNet Ultra V2 模型架构 BiRefNet Ultra V2 是一款专注于图像处理领域特别是背景去除任务的大规模神经网络模型。该版本继承并优化了前代产品的特性,旨在提供更加精准高效的抠图效果[^3]。 #### 主要改进点 - **双分支结构**:采用两个独立但相互协作的子网路设计,分别负责前景物体特征提取以及背景区域识别。 - **多尺度融合机制**:引入不同层次的空间金字塔池化模块(SPP),有效增强了对于复杂场景下目标边界细节捕捉能力。 - **轻量化部署方案**:针对移动端设备进行了针对性压缩裁剪,在保持性能的同时大幅降低了计算资源消耗。 ```python import torch.nn as nn class BiRefNetUltraV2(nn.Module): def __init__(self, num_classes=1): super(BiRefNetUltraV2, self).__init__() # 定义双分支主干网络和其他组件... def forward(self, x): # 前向传播逻辑... ``` ### 实现方式 为了实现上述提到的各项功能特点,开发者们采取了一系列先进的技术手段: - 使用预训练权重初始化部分卷积层参数,加速收敛过程; - 利用混合精度训练(Half Precision Training)减少内存占用并加快迭代速度; - 集成自定义损失函数来强化特定任务导向的学习效果; 这些措施共同作用使得 BiRefNet Ultra V2 不仅能在高分辨率图片上取得优异成绩,同时也具备良好的泛化能力和实时性表现[^4]。 ### 应用案例 实际应用场景方面,BiRefNet Ultra V2 已经被广泛应用于多个行业当中: - **电商美工自动化**:自动批量处理商品照片,去除杂乱背景提升视觉吸引力; - **影视后期制作**:辅助电影电视节目中的特效合成工作,简化绿幕拍摄流程; - **虚拟试衣间体验增强**:让用户能够即时看到穿着新衣服的效果,提高购物转化率; 综上所述,无论是从技术创新还是实用价值来看,BiRefNet Ultra V2 都展现出了极强的竞争优势和发展潜力.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DevOpsAigc云时代

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值