❤️ 如果你也关注大模型与 AI 的发展现状,且对大模型应用开发非常感兴趣,我会快速跟你分享最新的感兴趣的 AI 应用和热点信息,也会不定期分享自己的想法和开源实例,欢迎关注我哦!
🥦 微信公众号|搜一搜:蚝油菜花 🥦
🚀 快速阅读
- RMBG-2.0 是 BRIA AI 推出的最新图像背景移除模型,基于深度学习技术实现高精度的前景与背景分离。
- 该模型在超过 15,000 张高分辨率图像上训练,确保准确性和适用性,适用于电子商务、广告、游戏开发等多个领域。
- RMBG-2.0 提供高精度背景移除、商业用途支持、云服务器无关架构、多模态归因引擎和数据训练平台等主要功能。
正文(附运行示例)
RMBG-2.0 是什么
RMBG-2.0 是 BRIA AI 推出的最新图像背景移除模型,基于先进的 AI 技术实现高精度的前景与背景分离,达到 SOTA(State of the Art,即当前最佳)水平。RMBG-2.0 在性能上超越前代版本,从 1.4 版本的 73.26%准确率大幅提升至 2.0 版本的 90.14%,超越业界知名的付费工具 remove.bg。RMBG-2.0 在超过 15,000 张高分辨率图像上训练,确保准确性和适用性,适用于电子商务、广告、游戏开发等多个领域。
RMBG-2.0 的主要功能
- 高精度背景移除:RMBG-2.0 准确地从各种类型的图像中分离出前景对象,移除背景。
- 商业用途支持:适于电子商务、广告、游戏开发等多个领域,支持企业级内容的大规模创建。
- 云服务器无关架构:在不同的云服务器上运行,具有很好的灵活性和可扩展性。
- 多模态归因引擎:处理多种类型的图像和数据,提高模型的泛化能力。
- 数据训练平台:支持大规模数据训练,提升模型性能。
RMBG-2.0 的技术原理
- 深度学习:RMBG-2.0 基于深度学习技术,特别是卷积神经网络(CNN),识别和分离图像中的前景和背景。
- 数据训练:模型在大量标注好的图像数据上进行训练,学习如何区分前景和背景。
- 多模态归因:用多模态数据(如图像、文本等)提高模型对图像内容的理解,提高背景移除的准确性。
- 云服务器无关:设计为在不同的云平台和服务器上运行,不依赖于特定的硬件或软件环境。
- 数据烘焙:基于数据增强和预处理技术,提高模型的鲁棒性和对新场景的适应能力。
如何运行 RMBG-2.0
以下是使用 RMBG-2.0 进行图像背景移除的代码示例:
from PIL import Image
import matplotlib.pyplot as plt
import torch
from torchvision import transforms
from transformers import AutoModelForImageSegmentation
# 加载模型
model = AutoModelForImageSegmentation.from_pretrained('briaai/RMBG-2.0', trust_remote_code=True)
torch.set_float32_matmul_precision(['high', 'highest'][0])
model.to('cuda')
model.eval()
# 图像预处理
image_size = (1024, 1024)
transform_image = transforms.Compose([
transforms.Resize(image_size),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
# 加载输入图像
input_image_path = 'input_image.jpg'
image = Image.open(input_image_path)
input_images = transform_image(image).unsqueeze(0).to('cuda')
# 预测
with torch.no_grad():
preds = model(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(image.size)
image.putalpha(mask)
# 保存结果
image.save("no_bg_image.png")
资源
- 项目官网:https://blog.bria.ai/introducing-the-rmbg-v2.0-model-the-next-generation-in-background-removal-from-images
- HuggingFace 模型库:https://huggingface.co/briaai/RMBG-2.0
- 在线体验 Demo:https://huggingface.co/spaces/briaai/BRIA-RMBG-2.0
❤️ 如果你也关注大模型与 AI 的发展现状,且对大模型应用开发非常感兴趣,我会快速跟你分享最新的感兴趣的 AI 应用和热点信息,也会不定期分享自己的想法和开源实例,欢迎关注我哦!
🥦 微信公众号|搜一搜:蚝油菜花 🥦