旋转矩阵的自验证c++

本文介绍了旋转矩阵在三维空间中的应用,特别是关于先绕z轴、再绕y轴、最后绕x轴旋转的情况。文章指出,旋转矩阵应满足正交矩阵的性质,即其列向量为单位向量且两两正交,且矩阵的逆等于其转置。为了方便读者,作者提供了C++代码片段用于验证旋转矩阵是否符合这些性质。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

As you known,旋转矩阵R,表示的是绕x、y、z轴三个方向的旋转角度,即,我们常说的:俯仰角、偏航角、横滚角。

                                                               

根据坐标轴定义的不同及旋转顺序的不同,以先绕z轴再绕y轴再绕x轴旋转,那么,最终的选择矩阵R=Rx*Ry*Rz。

在使用该旋转矩阵之前,先要根据旋转矩阵的性质对它进行检查。(数学知识)

比如:

  1. 正交矩阵每一列都是单位矩阵,并且两两正交。
  2. 正交矩阵的逆(inverse)等于正交矩阵的转置(transpose)。
  3. and so on……

下面,鉴于我验证的时候没有百度到具体的公式(只有类似以上两行文字)以及相关代码,在此贴出几行验证的c++代码,供需要的人copy,免得再去翻线性代数的书了~

如果求得的值,与cout的“if  = 1”或者“if = 0"相等,则说明求得的R满足本身的性质。可以进行下一步的验证。

cout << R.t() << endl;
cout << R.inv() << endl;
cout << "if = 1 ? " << R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值