众所周知,在感知问题上,单一的传感器总是有一定的不足,就像我们人一样,需要用耳、鼻、眼、四肢等多“传感器”协作(融合)来探索和感知世界,这就是最通俗的“多元融合”解释。而在路侧或者车载感知中,需要多种传感器来共同感知路面环境,而多源信息融合的目的,就是将各单一信号源的感知结果进行组合优化,从而输出更有效的道路安全信息。
本文是多源数据融合的第一篇,科普多源数据融合的基本概念。
一、常见的信号源
常见的信号源主要有:毫米波雷达、超声波、摄像头、激光、GPS、里程计、惯导等等……这些传感器可以感知车身周围的安全信息、行驶道路的环境信息,也可以进行定位。
二、多源数据融合等级
首先,根据输出结果的不同,可以将多源数据融合分为不同的等级,我这里分别列出3级和5级模型,
3级模型:
5级模型:
在美国JDL/DFS分级模型的基础上,信息融合系统分类模型为5级: </