【OpenCV笔记】光流法之金字塔Lucas-Kanade

转自:https://blog.csdn.net/qq_33389308/article/details/83049479

本文参考链接:https://blog.csdn.net/zy122121cs/article/details/44955353
参考论文:”Pyramidal Implementation of the Lucas Kanade Feature TrackerDescription of the algorithm”

一、金字塔光流法介绍

光流金字塔即对图像进行分层处理,一般来说不算原始图像(最底层)的话分为四层就能满足需求,按照论文中的话说就是超过4层在大多数情况下没有意义。如果原始图像的大小为640x480,那么分为4层的大小分别为320x240,160x120,80x60,40x30。
如下图所示:
 

金字塔分层

接下来对金字塔光流法的过程进行简单描述,期间不会出现任何数学公式,对公式有兴趣的小伙伴可以直接搜索查阅参考文献的论文。
首先展示一张图:

金字塔光流的过程

我们对视频中点的跟踪实际上是对相邻两帧的图像进行处理,设图像I和J为相邻两帧的图像,我们希望在图像J中找到u0的对应点v,那么首先对两幅图像进行分层,假设如上图分为3层,如此可以分别计算得到u1、u2、u3。
对于金字塔我们从最高层开始进行处理, u3在图像J中的对应初始点为v31(v31和u3是相等的,图画的不太准),然后通过某种计算符合相应的条件后,得到当前层最小误差点v3n(n表示经过n次计算)和相应的光流。然后利用计算得到的光流能够在图像J中找到点v21作为第二层的初始点,以此类推进行和第3层一样的迭代计算最终能够获得包含各层光流分量的总光流,就能得到最终的对应点v0r。

注:1.某种计算具体见论文。
       2.相应条件包含两种,一是达到设置的迭代次数上限,二是计算结果符合精确度阈值。这在opencv的函数中有体现。

       3.论文中能够得到一些参数设置信息,迭代次数一般设置为5次即可(但是opencv中默认为30次),金字塔层数≤4,搜索窗大小为奇数x奇数。

 

二、OpenCV金字塔光流函数介绍

函数声明如下:

 
  1. CV_EXPORTS_W void calcOpticalFlowPyrLK( InputArray prevImg, InputArray nextImg,

  2. InputArray prevPts, InputOutputArray nextPts,

  3. OutputArray status, OutputArray err,

  4. Size winSize = Size(21,21), int maxLevel = 3,

  5. TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01),

  6. int flags = 0, double minEigThreshold = 1e-4 );

函数参数介绍
InputArray prevImg前一幅图像
InputArray nextImg后一幅图像
InputArray prevPtsvector,前一幅图像中想要跟踪的点集
InputOutputArray nextPtsvector,后一幅图像中计算得到的对应点集
OutputArray statusvector,记录状态,如果对应点的光流被搜索到则将对应点置1
OutputArray errvector,记录每个特征点的误差,如果光流没有被计算出来,不会有误差
Size winSize = Size(21,21)搜索窗的大小,如前所述为奇数x奇数
int maxLevel = 3金字塔的层数
TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01)迭代停止条件,默认设置为30次迭代或者阈值0.01
int flags = 0默认值为0,表示不设置此标记。有如下标记可以选择
OPTFLOW_USE_INITIAL_FLOW     = 4,
OPTFLOW_LK_GET_MIN_EIGENVALS = 8,
OPTFLOW_FARNEBACK_GAUSSIAN   = 256
double minEigThreshold = 1e-4作为阈值可以过滤掉一些不好的特征点以提升性能


三、官方例程
 

 
  1. #include "opencv2/video/tracking.hpp"

  2. #include "opencv2/imgproc.hpp"

  3. #include "opencv2/videoio.hpp"

  4. #include "opencv2/highgui.hpp"

  5.  
  6. #include <iostream>

  7. #include <ctype.h>

  8.  
  9. using namespace cv;

  10. using namespace std;

  11.  
  12. static void help()

  13. {

  14. // print a welcome message, and the OpenCV version

  15. cout << "\nThis is a demo of Lukas-Kanade optical flow lkdemo(),\n"

  16. "Using OpenCV version " << CV_VERSION << endl;

  17. cout << "\nIt uses camera by default, but you can provide a path to video as an argument.\n";

  18. cout << "\nHot keys: \n"

  19. "\tESC - quit the program\n"

  20. "\tr - auto-initialize tracking\n"

  21. "\tc - delete all the points\n"

  22. "\tn - switch the \"night\" mode on/off\n"

  23. "To add/remove a feature point click it\n" << endl;

  24. }

  25.  
  26. Point2f point;

  27. bool addRemovePt = false;

  28.  
  29. static void onMouse( int event, int x, int y, int /*flags*/, void* /*param*/ )

  30. {

  31. if( event == EVENT_LBUTTONDOWN )

  32. {

  33. point = Point2f((float)x, (float)y);

  34. addRemovePt = true;

  35. }

  36. }

  37.  
  38. int main( int argc, char** argv )

  39. {

  40. VideoCapture cap;

  41. TermCriteria termcrit(TermCriteria::COUNT|TermCriteria::EPS,20,0.03);

  42. Size subPixWinSize(10,10), winSize(31,31);

  43.  
  44. const int MAX_COUNT = 500;

  45. bool needToInit = false;

  46. bool nightMode = false;

  47.  
  48. help();

  49. cv::CommandLineParser parser(argc, argv, "{@input|0|}");

  50. string input = parser.get<string>("@input");

  51.  
  52. if( input.size() == 1 && isdigit(input[0]) )

  53. cap.open(input[0] - '0');

  54. else

  55. cap.open(input);

  56.  
  57. if( !cap.isOpened() )

  58. {

  59. cout << "Could not initialize capturing...\n";

  60. return 0;

  61. }

  62.  
  63. namedWindow( "LK Demo", 1 );

  64. setMouseCallback( "LK Demo", onMouse, 0 );

  65.  
  66. Mat gray, prevGray, image, frame;

  67. vector<Point2f> points[2];

  68.  
  69. for(;;)

  70. {

  71. cap >> frame;

  72. if( frame.empty() )

  73. break;

  74.  
  75. frame.copyTo(image);

  76. cvtColor(image, gray, COLOR_BGR2GRAY);

  77.  
  78. if( nightMode )

  79. image = Scalar::all(0);

  80.  
  81. if( needToInit )

  82. {

  83. // automatic initialization

  84. goodFeaturesToTrack(gray, points[1], MAX_COUNT, 0.01, 10, Mat(), 3, 0, 0.04);

  85. cornerSubPix(gray, points[1], subPixWinSize, Size(-1,-1), termcrit);

  86. addRemovePt = false;

  87. }

  88. else if( !points[0].empty() )

  89. {

  90. vector<uchar> status;

  91. vector<float> err;

  92. if(prevGray.empty())

  93. gray.copyTo(prevGray);

  94. calcOpticalFlowPyrLK(prevGray, gray, points[0], points[1], status, err, winSize,

  95. 3, termcrit, 0, 0.001);

  96. size_t i, k;

  97. for( i = k = 0; i < points[1].size(); i++ )

  98. {

  99. if( addRemovePt )

  100. {

  101. if( norm(point - points[1][i]) <= 5 )

  102. {

  103. addRemovePt = false;

  104. continue;

  105. }

  106. }

  107.  
  108. if( !status[i] )

  109. continue;

  110.  
  111. points[1][k++] = points[1][i];

  112. circle( image, points[1][i], 3, Scalar(0,255,0), -1, 8);

  113. }

  114. points[1].resize(k);

  115. }

  116.  
  117. if( addRemovePt && points[1].size() < (size_t)MAX_COUNT )

  118. {

  119. vector<Point2f> tmp;

  120. tmp.push_back(point);

  121. cornerSubPix( gray, tmp, winSize, Size(-1,-1), termcrit);

  122. points[1].push_back(tmp[0]);

  123. addRemovePt = false;

  124. }

  125.  
  126. needToInit = false;

  127. imshow("LK Demo", image);

  128.  
  129. char c = (char)waitKey(10);

  130. if( c == 27 )

  131. break;

  132. switch( c )

  133. {

  134. case 'r':

  135. needToInit = true;

  136. break;

  137. case 'c':

  138. points[0].clear();

  139. points[1].clear();

  140. break;

  141. case 'n':

  142. nightMode = !nightMode;

  143. break;

  144. }

  145.  
  146. std::swap(points[1], points[0]);

  147. cv::swap(prevGray, gray);

  148. }

  149.  
  150. return 0;

  151. }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值