范数(norm) 几种范数的简单介绍

转自:https://blog.csdn.net/a493823882/article/details/80569888

https://www.zhihu.com/question/20473040

什么是范数?

我们知道距离的定义是一个宽泛的概念,只要满足非负、自反、三角不等式就可以称之为距离。范数是一种强化了的距离概念,它在定义上比距离多了一条数乘的运算法则。有时候为了便于理解,我们可以把范数当作距离来理解。

在数学上,范数包括向量范数和矩阵范数,向量范数表征向量空间中向量的大小,矩阵范数表征矩阵引起变化的大小。一种非严密的解释就是,对应向量范数,向量空间中的向量都是有大小的,这个大小如何度量,就是用范数来度量的,不同的范数都可以来度量这个大小,就好比米和尺都可以来度量远近一样;对于矩阵范数,学过线性代数,我们知道,通过运算AX=B,可以将向量X变化为B,矩阵范数就是来度量这个变化大小的。

这里简单地介绍以下几种向量范数的定义和含义 
1、 L-P范数 
与闵可夫斯基距离的定义一样,L-P范数不是一个范数,而是一组范数,其定义如下: 



根据P 的变化,范数也有着不同的变化,一个经典的有关P范数的变化图如下: 
这里写图片描述 
上图表示了p从无穷到0变化时,三维空间中到原点的距离(范数)为1的点构成的图形的变化情况。以常见的L-2范数(p=2)为例,此时的范数也即欧氏距离,空间中到原点的欧氏距离为1的点构成了一个球面。

 

实际上,在0时,Lp并不满足三角不等式的性质,也就不是严格意义下的范数。以p=0.5,二维坐标(1,4)、(4,1)、(1,9)为例,。因此这里的L-P范数只是一个概念上的宽泛说法。

2、L0范数 

当P=0时,也就是L0范数,由上面可知,L0范数并不是一个真正的范数,它主要被用来度量向量中非零元素的个数。用上面的L-P定义可以得到的L-0的定义为: 

这里就有点问题了,我们知道非零元素的零次方为1,但零的零次方,非零数开零次方都是什么鬼,很不好说明L0的意义,所以在通常情况下,大家都用的是: 

表示向量x中非零元素的个数。

对于L0范数,其优化问题为: 


s.t. Ax=b 

在实际应用中,由于L0范数本身不容易有一个好的数学表示形式,给出上面问题的形式化表示是一个很难的问题,故被人认为是一个NP难问题。所以在实际情况中,L0的最优问题会被放宽到L1或L2下的最优化。

 

3、L1范数 
L1范数是我们经常见到的一种范数,它的定义如下: 

 

表示向量x中非零元素的绝对值之和。

 

L1范数有很多的名字,例如我们熟悉的曼哈顿距离、最小绝对误差等。使用L1范数可以度量两个向量间的差异,如绝对误差和(Sum of Absolute Difference): 

对于L1范数,它的优化问题如下: 



由于L1范数的天然性质,对L1优化的解是一个稀疏解,因此L1范数也被叫做稀疏规则算子。通过L1可以实现特征的稀疏,去掉一些没有信息的特征,例如在对用户的电影爱好做分类的时候,用户有100个特征,可能只有十几个特征是对分类有用的,大部分特征如身高体重等可能都是无用的,利用L1范数就可以过滤掉。

 

4、L2范数 
L2范数是我们最常见最常用的范数了,我们用的最多的度量距离欧氏距离就是一种L2范数,它的定义如下: 


表示向量元素的平方和再开平方。 
像L1范数一样,L2也可以度量两个向量间的差异,如平方差和(Sum of Squared Difference): 

 

对于L2范数,它的优化问题如下: 

 

L2范数通常会被用来做优化目标函数的正则化项,防止模型为了迎合训练集而过于复杂造成过拟合的情况,从而提高模型的泛化能力。

 

 

5、范数

时,也就是范数,它主要被用来度量向量元素的最大值,与L0一样,通常情况下表示为 

来表示

--------------------- 本文来自 7asonChai 的CSDN 博客 ,全文地址请点击:https://blog.csdn.net/a493823882/article/details/80569888?utm_source=copy

### 如何在 PyTorch 中使用 L2 范数 `torch.norm` 函数 #### 使用方法概述 为了计算张量的L2范数,在调用`torch.norm`函数时设置参数`p=2`即可。这适用于向量和矩阵形式的输入数据。 #### 向量的L2范数计算实例 对于一维张量(即向量),可以通过如下方式来获取其L2范数: ```python import torch vector = torch.tensor([-4., -3., -2., -1., 0., 1., 2., 3., 4.]) l2_norm_vector = torch.norm(vector, p=2) print(l2_norm_vector) # 输出应接近于7.7460 ``` 上述代码创建了一个包含负数到正数值的一维浮点型张量,并对其应用了L2范数运算[^4]。 #### 矩阵的L2范数计算实例 当处理二维或多维张量(如矩阵)并希望沿特定维度求解L2范数时,可通过设定`dim`参数指定期望的操作轴线: ```python matrix = vector.view(3, 3) # 计算整个矩阵的Frobenius范数,默认行为相当于设置了p='fro' full_matrix_l2_fro = torch.norm(matrix) # 对每一列分别计算L2范数 column_wise_l2 = torch.norm(matrix, p=2, dim=0) # 对每一行分别计算L2范数 row_wise_l2 = torch.norm(matrix, p=2, dim=1) print(f"Full matrix Fro norm: {full_matrix_l2_fro}") print(f"Column-wise L2 norms: {column_wise_l2}") print(f"Row-wise L2 norms: {row_wise_l2}") ``` 这里展示了三种不同情况下的L2范数计算:整体矩阵、按列以及按行的方式[^1]。 #### 关键参数解释 - **input**: 输入张量。 - **p (float)**: 指定要使用的范数类型;对于L2范数而言,应该设为2。 - **dim (int or tuple of ints, optional)**: 如果提供了此参数,则表示沿着哪个维度进行操作;如果不提供,则默认在整个张量上执行全局范数计算。 - **keepdim (bool, optional)**: 是否保持输出张量具有相同的尺寸结构作为输入张量,仅当指定了`dim`时有效。 - **dtype (torch.dtype, optional)**: 可选地指定返回值的数据类型。 通过调整这些参数选项,可以根据具体需求灵活运用`torch.norm`来进行各种类型的范数计算。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值