SW质量属性

文章详细介绍了质量属性,包括质量、质量中心和惯性张量的概念,以及如何覆盖计算的值。转动惯量作为衡量刚体转动惯性的量度,其在旋转动力学中的作用类似于线性动力学中的质量。此外,文中还提到了惯性主轴和惯性矩,以及如何通过全局坐标系描述这些属性。
摘要由CSDN通过智能技术生成

1. 覆盖质量属性:指派质量、质量中心和惯性张量的值以覆写所计算的值。

2. 质量属性内容:

密度
质量
体积
曲面区域
质量中心
惯性主轴
惯性矩和产品准则

在图形区域中,单色三重轴指示了模型的主轴和质量中心。 三色参考 3D 三重轴将显示在原点 

3. 惯性动量及惯性项积计算公式

4. 

 转动惯量(又称质量惯性矩,简称惯矩)(Moment of Inertia),是刚体绕轴转动时惯性(回转物体保持其匀速圆周运动或静止的特性)的量度,用字母I或J表示。在经典力学中,转动惯量通常以I 或J表示,SI 单位为 kg·m²。对于一个质点,mr²,其中 m 是其质量,是质点和转轴的垂直距离。

转动惯量在旋转动力学中的角色相当于线性动力学中的质量,可形式地理解为一个物体对于旋转运动的惯性,用于建立角动量、角速度、力矩和角加速度等数个量之间的关系。

  解释:

区域1:以重心,全局坐标系方向,

Lxx为绕x轴的惯性矩;Lyy为绕y轴的惯性矩;Lzz为绕z轴的惯性矩;

区域2:以重心

Ix = (1.00, 0.00, 0.00),Iy = (0.00, 0.00, -1.00), Iz = (0.00, 1.00, 0.00)是3个特征向量,指出了惯性主轴的方向。

Px,Py,Pz 是围绕各自主轴的惯性主力矩

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值