在几何造型中,两种最常用的曲线、曲面表示方法是隐式表示和参数表示方法。
xy平面上曲线可以用形如 f ( x , y ) = 0 f(x,y)=0 f(x,y)=0 的隐式方程来表示。这个方程隐含地描述了曲线上点的 x,y坐标之间所满足的关系。对于一条给定的曲线,除了差一个常数因子外,方程是唯一的。
在参数表示形式中,曲线上点的每个坐标分量均被表示为一个独立参数的显函数。
圆心位于原点的单位圆:
隐式方程: f ( x , y ) = x 2 + y 2 − 1 = 0 f(x,y) = x^{2}+ y^{2} -1 = 0 f(x,y)=x2+y2−1=0
参数方程: C ( u ) = ( x ( u ) , y ( u ) ) , a ⩽ u ⩽ b C(u) = (x(u),y(u)), a\leqslant u\leqslant b C(u)=(x(u),y(u)),a⩽u⩽b
C ( u ) C(u) C(u)是一个独立变量 u u u的矢值函数, [ a , b ] [a,b] [a,b]可以是任意的,但通常将其归一化为 [ 0 , 1 ] [0,1] [0,1]。
位于第一象限的圆弧采用参数形式可以表示为
{ x ( u ) = c o s ( u ) y ( u ) = s i n ( u ) 0 ⩽ u ⩽ π 2 ( 1.1 ) \begin{cases} x(u)=cos(u) \\ y(u) = sin(u)\end{cases} \quad 0\leqslant u\leqslant \frac{\pi}{2} \quad (1.1) {
x(u)=cos(u)y(u)=sin(u)0⩽u⩽2π(1.1)
令 t = tan ( u 2 ) t = \tan(\frac{u}{2}) t=tan(2u),得到另一种参数表示形式
{ x ( t ) = 1 − t 2 1 + t 2 y ( t ) = 2 t 1 + t 2 0 ⩽ t ⩽ 1 ( 1.2 ) \begin{cases} x(t)=\frac{1-t^2}{1+t^2} \\ y(t)=\frac{2t}{1+t^2}\end{cases} \quad 0\leqslant t\leqslant 1\quad(1.2) {
x(t)=1+t21−t2y(t)=