计算机图形学 参数曲线和曲面的相关知识点

本文详细介绍了参数曲线和曲面的基本概念,包括参数表示与非参数表示的优缺点。参数化方法如均匀参数化、累加弦长参数化等被提及,同时讨论了插值、拟合和光顺的概念,以及曲线间的连续性和几何连续性的度量。此外,还探讨了参数区间规格化的重要性及其在曲线代数和几何形式中的应用。
摘要由CSDN通过智能技术生成

本文整理自西安交通大学软件学院祝继华老师的计算机图形学课件,请勿转载

参数曲线和曲面

曲线曲面参数表示

非参数表示

  • 显式表示:y=f(x),无法表示封闭或多值曲线,如圆。
  • 隐式表示:f(x,y)=0,易于判断函数值与零的关系,确定点与曲线的关系。

存在下述问题:

  • 与坐标轴相关;
  • 会出现斜率为无穷大的情形(如垂线)。

参数表示

曲线上任一点的坐标均表示成给定参数的函数

假定用t表示参数

image-20220215145256113

曲线的基本概念

  • 三维曲线:用参数表示的三维曲线是一个有界的点集,可以表示成一个带参数的、连续的和单值的数学函数

image-20220215145338378

  • 位置矢量

image-20220215145401386

插值、拟合和光顺

插值

给定一组有序的数据点 P i P_i Pi构造一条曲线顺序通过这些数据点,所构造的曲线称为插值曲线

  • 线性插值:假设给定函数f(x)在两个不同点x1和x2的值,用一个线形函数:y=ax+b,近似代替,称为的线性插值函数。
  • 抛物线插值:已知在三个互异点 x 1 , x 2 , x 3 x_1,x_2,x_3 x1,x2,x3的函数值为 y 1 , y 2 , y 3 y_1,y_2,y_3 y1,y2,y3,要求构造一个函数 ϕ ( x ) = a x 2 + b x + c \phi(x)=ax^2+bx+c ϕ(x)=ax2+bx+c使抛物线 ϕ ( x ) \phi(x) ϕ(x)在结点 x i 9 i = 1 , 2 , 3 x_i9i=1,2,3 xi9i=1,2,3处与 f ( x ) f(x) f(x) x i x_i xi处的值相等

image-20220215150005555

拟合

构造一条曲线使之在某种意义下最接近给定的数据点,所构造的曲线为拟合曲线

逼近

在计算数学中,逼近通常指用一些性质较好的函数近似表示一些性质不好的函数。在计算机图形学中,逼近继承了这方面的含义

光顺(Fairing)

指曲线的拐点不能太多。对平面曲线而言,相对光顺的条件是:

a. 具有二阶几何连续性(G2);
b. 不存在多余拐点和奇异点;
c. 曲率变化较小

参数化

过三点P0、P1和P2构造参数表示的插值多项式可以有无数条

  • 对应地参数t, 在[0,1]区间中有无数种取法;
  • 参数值称为节点(knot)。

对于一条插值曲线,型值点 P 0 , P 1 , ⋅ ⋅ ⋅ , P n P_0,P_1,\cdot\cdot\cdot,P_n P0,P1,,Pn与其参数域 t ∈ [ t 0 , t n ] t\in [t_0,t_n] t[t0,tn]内的节点之间有一种对应关系:对于一组有序的型值点,所确定一种参数分割,称之为这组型值点的参数化

参数化常用方法

  • 均匀参数化(等距参数化)

    节点在参数轴上呈等距分布, t i + 1 = t i t_{i+1}=t_i ti+1=ti+正常数。

  • 累加弦长参数化

    • 反映型值点按弦长的分布情况;
    • 能克服均匀参数化所出现的问题。

    image-20220215150354580

  • 向心参数化法;

  • 修正弦长参数化法。

参数区间的规格化

我们通常将参数区间 [ t 0 , t n ] [t_0,t_n] [t0,tn]规格化为[0,1], [ t o , t n ] ≠ [ 0 , 1 ] [t_o,t_n]\ne [0,1] [to,tn]=[0,1],只需对参数化区间作如下处理:

image-20220215150529596

参数曲线的代数和几何形式

  • 代数形式

image-20220215150558512

  • 几何形式

image-20220215150637629

连续性

曲线间连接的光滑度的度量:

  • 参数连续性:组合参数曲线在连接处具有直到n阶连续导矢,即n阶连续可微,称为n阶参数连续性 C n C^n Cn
  • 几何连续性:组合曲线在连接处满足不同于 C n C^n Cn的某一组约束条件,称为具有n阶几何连续性 G n G^n Gn

对于参数 t ∈ [ 0 , 1 ] t\in[0,1] t[0,1]的两条曲线P(t)和Q(t)

  • 若要求在结合处达到 C 0 C^0 C0连续或 G 0 G^0 G0连续,即两曲线在结合处位置连续: P ( 1 ) = Q ( 0 ) P(1)=Q(0) P(1)=Q(0)

  • 若要求在结合处达到 G 1 G^1 G1连续,就是说两条曲线在结合处在满足 G 0 G^0 G0连续的条件下,并有公共的切矢: Q ′ ( 0 ) = α P ′ ( 1 )     ( α > 0 ) Q'(0)=\alpha P'(1) \ \ \ (\alpha>0) Q(0)=αP(1)   (α>0)

    • 当a=1时, G 1 G^1 G1连续就成为 C 1 C^1 C1连续
      • 若P 和Q 在连接处已有 C 0 , C 1 C^0,C^1 C0,C1连续性且曲率的大小和方向均相等,即 P ′ ′ ( 1 ) = Q ′ ′ ( 0 ) P''(1)=Q''(0) P(1)=Q(0)则P 和Q 在连接处具有 C 2 C^2 C2连续
      • 若P 和Q 在连接处已有 C 0 , C 1 C^0,C^1 C0,C1连续性且曲率的大小不相等但方向相等,则P 和Q 在连接处具有 G 2 G^2 G2连续。
  • 若要求在结合处达到 G 2 G^2 G2连续,就是说两条曲线在结合处在满足 G 1 G^1 G1连续的条件下,并有公共的曲率矢:

    image-20220215151146025

    • 这个关系可写为: Q ′ ′ ( 0 ) = α 2 P ′ ′ ( 1 ) + β P ′ ( 1 ) Q''(0)=\alpha^2P''(1)+\beta P'(1) Q(0)=α2P(1)+βP(1)
    • β \beta β为任意常数,当 α = 1 , β = 0 \alpha=1,\beta=0 α=1,β=0时, G 2 G^2 G2连续就成为 C 2 C^2 C2连续
  • 0
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Hydrion-Qlz

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值