信息熵
对信息进行量化度量。可以理解为某种特定信息的出现概率。
计算公式
相对熵
【百度百科】相对熵(relative entropy),又被称为Kullback-Leibler散度(Kullback-Leibler divergence,KL散度)或信息散度(information divergence),是两个概率分布(probability distribution)间差异的非对称性度量 。在在信息理论中,相对熵等价于两个概率分布的信息熵(Shannon entropy)的差值。
计算公式
设是随机变量上的两个概率分布,则在离散与连续随机变量的情形下,相对熵的定义分别为:
值得注意的是,KL散度可以理解为距离,但不是真的距离,即p对q的相对熵与q对p的相对熵不相等。即:
互信息
【百度百科】互信息(Mutual Information)是信息论里一种有用的信息度量,它可以看成是一个随机变量中包含的关于另一个随机变量的信息量,或者说是一个随机变量由于已知另一个随机变量而减少的不肯定性。
计算公式
设两个随机变量 的联合分布为,边缘分布分别为
互信息是联合分布与乘积分布的相对熵,即公式为:
归一化互信息(NMI)
顾名思义,将互信息放在[0,1]之间,容易评价算法的好坏。比较常见的归一化方法: