归一化互信息(NMI)评价指标

信息熵

对信息进行量化度量。可以理解为某种特定信息的出现概率。

计算公式

\large H(X)=-\sum_i p(x_{i})logp(x_{i})

相对熵

百度百科】相对熵(relative entropy),又被称为Kullback-Leibler散度(Kullback-Leibler divergence,KL散度)或信息散度(information divergence),是两个概率分布(probability distribution)间差异的非对称性度量 。在在信息理论中,相对熵等价于两个概率分布的信息熵(Shannon entropy)的差值。

计算公式

p(x),q(x)是随机变量X上的两个概率分布,则在离散与连续随机变量的情形下,相对熵的定义分别为:

KL(p||q) = \sum p(x)log \frac{p(x)}{q(x)}

KL(p||q) = \int p(x)log \frac {p(x)}{q(x)}

值得注意的是,KL散度可以理解为距离,但不是真的距离,即p对q的相对熵与q对p的相对熵不相等。即:

KL(p||q) \neq KL(q||p)

互信息

百度百科】互信息(Mutual Information)是信息论里一种有用的信息度量,它可以看成是一个随机变量中包含的关于另一个随机变量的信息量,或者说是一个随机变量由于已知另一个随机变量而减少的不肯定性。

计算公式

设两个随机变量 (X,Y)的联合分布为p(x,y),边缘分布分别为p(x),p(y)

互信息I(X;Y)是联合分布p(x,y)与乘积分布p(x)(y)的相对熵,即公式为:

I(X;Y)=\sum_x\sum_y p(x,y) log \frac{p(x,y)}{p(x)p(y)}

归一化互信息(NMI)

顾名思义,将互信息放在[0,1]之间,容易评价算法的好坏。比较常见的归一化方法:

计算公式

NMI(X;Y) = 2\frac {I(X;Y)}{H(X)+H(Y)}

NMI(Normalized Mutual Information)是一种用于衡量聚类结果相似度的评价指标。它结合了信息熵和互信息的概念,可以用来衡量两个聚类结果之间的相似程度。NMI的计算公式可以表示为互信息除以聚类结果熵的最大值,从而将其标准化。 在Python中,可以使用sklearn库的metrics模块来计算NMI。具体步骤是导入相应的模块(from sklearn import metrics),然后提供两个聚类结果的标签(比如A和B),最后调用normalized_mutual_info_score函数计算NMI的值。 下面是一个示例代码: ```python from sklearn import metrics A = [1, 1, 1, 2, 3, 3] B = [1, 2, 3, 1, 2, 3] result_NMI = metrics.normalized_mutual_info_score(A, B) print("result_NMI:", result_NMI) ``` 以上代码会输出NMI的值,其中A和B是两个聚类结果的标签。你可以根据实际的聚类结果替换A和B的值,从而计算得到相应的NMI。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [聚类的评价指标NMI标准化互信息+python实现+sklearn调库](https://blog.csdn.net/weixin_42764932/article/details/114384803)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* [互信息计算matlab代码-adjusted_mutual_information:R代码,用于在聚类之间快速且并行地计算调整后的互信息](https://download.csdn.net/download/weixin_38522214/19144881)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值