一、数据挖掘基本概念
1、数据挖掘产生的背景及意义
数据挖掘起源于数据库领域,但随着计算能力的提高和大规模数据集的普及,它逐渐成为一个独立的研究领域。数据挖掘的历史可以追溯到上世纪80年代,随后在商业、科学和社会领域得到广泛应用。数据挖掘的发展与机器学习、统计学、数据库技术和人工智能等领域的交叉融合密不可分。
2、什么是数据挖掘
数据挖掘,又称数据库中的知识发现(KDD),是指从大型数据库或数据仓库中提取出隐含的、未知的、非平凡的及有潜在应用价值的信息或模式的过程。这个过程通常涉及数据清洗、数据集成、数据选择、数据变换、数据挖掘以及模式评估等多个步骤。数据挖掘的技术和方法涵盖了统计学、机器学习、数据库技术、可视化技术等多个领域。
3、数据挖掘的任务
任务 | 描述 | 目的 | 方法与算法 | 应用场景 |
---|---|---|---|---|
分类 | 将数据划分到预定义的类别中 | 识别和归纳数据模式,便于对未知数据进行标签预测 | 决策树、支持向量机、朴素贝叶斯等 | 垃圾邮件过滤、文本分类、疾病诊断等 |
聚类 | 将数据实例分组,组内相似度高 | 发现数据内在的结构和关系,帮助发现潜在的群体和模式 | K均值聚类、层次聚类、DBSCAN等 | 市场细分、图像分割、社交网络分析等 |
关联规则挖掘 | 发现项集之间的关联关系 | 揭示数据中的关联规律,帮助了解不同数据项之间的潜在关系 | Apriori算法、FP-growth算法等 | 购物篮分析、交叉销售推荐等 |
回归分析 | 预测连续变量的数值输出 | 建立输入特征和输出之间的关系模型,用于预测未知数值 | 线性回归、决策树回归、神经网络回归等 | 股票价格预测、销售量预测等 |
文本挖掘 | 从文本数据中提取有用信息 | 分析文本内容,进行情感分析、主题提取等 | TF-IDF、词嵌入、主题模型等 | 舆情分析、文档分类、信息检索等 |
时间序列分析 | 分析和预测时间序列数据的变化趋势 | 预测未来趋势、发现周期性模式,支持决策制定 | 季节性分解、ARIMA模型、神经网络时间序列模型等 | 股票价格预测、气象数据分析、交通流量预测等 |
图数据挖掘 | 分析和挖掘图结构数据中的模式、社区结构等 | 揭示图中的节点关系、社区结构,支持社交网络分析 | 神经网络、PageRank算法、社区检测算法等 | 社交网络分析、推荐系统、生物信息学中的蛋白质互作网络分析等 |
集成学习 | 结合多个基本模型以提高性能和泛化能力 | 提高模型鲁棒性、降低过拟合风险,提升整体性能 | 随机森林、梯度提升机、模型融合等 | 在各种任务中应用,如分类、回归等 |
深度学习 | 使用深度神经网络进行学习和建模 | 处理复杂非线性关系,适用于大规模数据和高维特征 | 卷积神经网络(CNN)、循环神经网络(RNN)、变换器(Transformer)等 | 图像识别、自然语言处理、语音识别等 |
4、数据挖掘包括哪些阶段
问题定义与目标制定: 任务明确: 首先明确数据挖掘的任务,例如分类、聚类、关联规则挖掘等。 目标制定: 定义明确的挖掘目标,明确想要从数据中获得的信息。 数据收集: 数据源获取: 确定需要挖掘的数据来源,可能是数据库、日志文件、传感器数据等。 数据采集: 采集、抽取、整合数据,确保数据质量和可用性。 数据清理与预处理: 缺失值处理: 处理数据中的缺失值,选择适当的填充或删除策略。 异常值处理: 检测和处理异常值,确保数据的准确性。 数据转换: 对数据进行归一化、标准化、离散化等处理,以便于后续挖掘过程。 特征选择与抽取: 选择关键特征或进行特征抽取,减少维度和噪声。 数据探索与分析: 描述性统计: 对数据进行基本的统计分析,了解数据的分布、中心趋势和离散度。 可视化分析: 使用图表、图形化工具对数据进行可视化,发现潜在的模式和规律。 探索性数据分析: 通过数据的交叉分析和相关性分析,进一步理解数据之间的关系。 模型选择与建立: 选择算法: 根据任务类型选择合适的数据挖掘算法,例如决策树、支持向量机、神经网络等。 模型建立: 使用选定的算法在训练集上建立数据挖掘模型,调整参数以提高模型性能。 模型评估: 使用测试集对模型进行评估,考察模型的泛化能力和性能。 模型验证与优化: 验证结果: 验证模型的有效性,确保模型在实际应用中能够产生可靠的结果。 优化调整: 根据验证结果对模型进行调整和优化,提高模型的性能和稳定性。 模型应用与部署: 应用场景: 将训练好的模型应用到实际场景中,用于实际问题的解决。 系统集成: 将数据挖掘模型集成到现有系统中,确保系统的稳定性和兼容性。 结果解释与报告: 结果解释: 解释模型输出的结果,理解模型对数据的解释和预测。 报告撰写: 撰写数据挖掘过程和结果的报告,清晰地呈现数据挖掘的发现和结论。 反馈与迭代: 反馈机制: 根据实际应用中的反馈,对模型和流程进行迭代和改进。 持续优化: 持续监控模型性能,对系统进行优化,以适应数据和业务环境的变化。 这一般流程被称为 CRISP-DM(Cross Industry Standard Process for Data Mining),是一种常用的数据挖掘流程模型。在实际应用中,流程的具体步骤和顺序可能根据问题和数据的特性而有所不同。
5、数据挖掘、机器学习之间的关系
数据挖掘是一种深层次地数据分析方法,需要对涉及到地海量数据进行管理与分析
数据库领域的研究为数据挖掘提供数据管理技术,对于利用计算机对历史数据的分析,就是误码通常所说的机器学习
机器学习的定义:
机器学习是利用经验来改善计算机系统自身的性能,机器学习需要:
①通过数据分析建立模型
②利用算法对模型进行优化
③使计算机不断模拟人的学习行为来获取新的知识和技能,不断改善性能从而实现自我完善
机器学习方法构成地三元素:
①模型 ②策略 ③算法
可简单表示为:机器学习 = 模型+策略 + 算法
模型是从数据中抽象用来描述客观世界的数学模型
机器学习的根本目的是构建一个模型来描述历史的数据规律,通过这个模型对未来进行预测
策略是选择模型的标准
假设空间往往包括多个模型,策略来确定哪一个模型是最好的
算法是指学习模型的具体计算方法,即在确定寻找最优模型的策略后,机器学习的问题归结于最优化问题,其优化算法是指求解模型参数最优解的算法
机器学习及发展历程
1、机器学习基本过程
①第一步 数据集准备:机器学习是数据贪婪的,数据采集是最基础、最重要的一步,从不同的数据源收集数据,数据集是构建机器学习模型的起点。
②第二步 数据预处理:数据预处理是指对数据进行清洗、归约或转换等。通过对数据进行各种检查和校正以纠正缺失值、异常、标准化等问题。通过预处理将数据结构化以便满足模型训练的需要。第一和第二步属于机器学习初级阶段 ③第三步模型选择:根据具体任务特定问题的要求,选择合适的模型,根据机器学习模型对于训练数据处理方式的不同,机器学习算法可以大致可分为:监督学习、无监督学习和强化学习等。
④第四步模型训练:机器学习过程的核心是模型训练通过训练历史经验数据,对选择的模型的参数进行不断优化,最小化模型预测带来的误差。
第三和第四部属于机器学习中级阶段。
⑤第五步模型评估优化:在训练好模型之后,利用在数据预处理中准备好的测试数据集对模型进行测试。对模型评估结束后,还可以通过调参对训练过程进行优化。
⑥第六步应用预测:使用完全训练好的模型在新数据上做预测,这是机器学习过程的最后一步,在此阶段默认该模型已准备就绪,可以用于实际应用。
第五和第六步属于机器学习高级阶段,实现智能的目标。
2、机器学习的发展历程
机器学习的发展历程可以追溯到上世纪50年代,但直到近年来,随着计算能力的提升和数据量的增加,机器学习才得到了广泛的应用和发展。从最初的符号主义学习到后来的统计学习,再到现在的深度学习,机器学习经历了多次的变革和进步。其中,深度学习作为机器学习的一个分支,在图像识别、语音识别、自然语言处理等领域取得了显著的成果。
3、机器学习算法分类(监督学习、非监督学习,强化学习)
机器学习算法可以分为监督学习、非监督学习和强化学习等类型。
监督学习是指在训练过程中,算法会接收到一组带有标签的输入数据,并根据这些数据来学习如何预测新的输入数据的标签。
非监督学习则是指算法在没有标签的情况下进行学习,它通常用于聚类、降维等任务。
强化学习则是一种让算法通过与环境进行交互来学习如何做出决策的方法,它通常用于机器人控制、游戏等领域。
4、数据集划分(训练数据、测试数据)
在机器学习过程中,通常需要将数据集划分为训练数据和测试数据。
训练数据用于训练模型,即让模型学习如何从输入数据中预测出输出数据。
而测试数据则用于评估模型的性能,即检查模型在新数据上的预测能力。通过将数据集划分为训练数据和测试数据,可以更加准确地评估模型的泛化能力,从而选择出性能更好的模型。