文章目录
基本概念
1.子群
子群的定义:假设<G,※>是一个群,H是G的非空子集,如果<H,※>也构成一个群,那么就称<H,※>是<G,※>的子群,记作H≤G。当H≤G且H≠G时,称H是G的真子群。
子群的存在性:任何群都存在子群。
平凡子群的定义:<G,※>和<{e},※>都是<G,※>的子群,被称为<G,※>的平凡子群。
子群的传递性:如果A和B都是群C的子群,且A包含于B,则A也是B的子群。
2.子群判定定理
第一条判定定理:如果<G,※>是群,那么<H,※>为<G,※>的子群的充要条件是:
- 包含幺元:G的幺元是H中的元素。
- 运算封闭性:※运算在H上仍然是封闭的。
- 包含逆元:H中任意元素的逆元也在H中。
第二条判定定理:如果<G,※>是群,H是G的有限非空子集,那么<H,※>是<G,※>的子群当且仅当运算在H上也封闭。
备注1:也就是说,当H是有限集时,第一条判定定理中的条件就可以放宽松了,只需要运算封闭即可。
备注2:根据第二条判定定理,根据一个群的二元运算表,可以根据运算封闭性来找出这个群的所有子群。
第三条判定定理:设<G,※>为群,H为G的非空子集,则<H,※>是<G,※>的子群当且仅当对H中的任意元素a和b,都有a※b-1仍然是H中的元素。
3.群的重要性质
群的中心的概念:假设<G,※>是一个群,<C,※>是由G中所有运算满足可以交换性的元素构成的集合,则C是G的子群,被称为G的中心。
群的交集并集和运算:设<G,※>是群,<H,※>和<K,※>是G的子群,则有下面这些结论:
- <H∩K,※>也是<G,※>的子群;
- <H∪K,※>是<G,※>的子群当且仅当H是K的子集或K是H的子集;
- <HK,※>是<G,※>的子群当且仅当HK=KH。
4.子半群
子半群的定义:设<S,※>是一个半群,B是S的子集且运算在B上是封闭的,那么<B,※>也是一个半群,被称为<S,※>的子半群。
5.共轭子群
共轭子群的定义:设<G,※>是一个群,H是G的子群,x∈G,则可以证明xHx-1元素的集合构成G的子群,被称为G的共轭子群。
6.正规子群
正规子群的定义:设<G,※>是群,H是G的子集,如果对于G中的任意元素g,都存在gH=Hg(两个集合相等),那么就称H是G的正规子群或不变子群。
正规子群的性质:
- 任何群都有两个平凡的正规子群,一个只包含幺元,另一个为自身。如果一个群只有平凡正规子群,那么称这个群为单群。
- 如果G本身是一个交换群,那么G的所有子群都是正规子群。
- 如果H和K都是G的子群,H是G的正规子群且H是K的子集,那么H也是K的正规子群。
常用结论
一个群具有两个子群,这两个子群的独有元素进行运算的结果不在任何一个子群中。(可以通过反证法证明)。
相关题型
1.证明一个代数系统是另一个代数系统的子群
解析:本题考查证明一个代数系统是另一个代数系统的子群。
为了证明一个代数系统是另一个代数系统的子群,我们只需要证明这个代数系统是群,同时该代数系统对应的集合是另一个代数系统对应集合的子集即可。
H表示的是偶数集合,偶数集合的加法明显满足封闭性和可结合性,同时运算存在幺元0,每个元素都存在其相反数作为逆元。
另外,偶数集合是整数集合的子集,由此可以证明题目中的结论成立。
2.证明一个代数系统是另一个代数系统的子群
解析:本题考查证明一个代数系统是另一个代数系统的子群,和上一题采用一样的方法即可。也就是先证明四个代数系统都是群,然后判断对应的集合是原始集合的子集即可。因此本题的具体过程略。
3.判断一个代数系统是否是另一个代数系统的子群
解析:本题考查子群的判定。只需要判断代数系统是否是群,以及其对应的集合是否是另一个集合的子集即可。
对于A选项:容易看出运算不满足封闭性,因此该代数系统不是舞步群的子群。
对于B选项:运算满足封闭性和可结合性,存在幺元(静止不动),每个元素存在逆元为其自身。对于整个集合,是原始集合的子集,因此该代数系统是舞步群的子群。
对于C选项:通过类似的方法可以判断运算满足封闭性和可结合性,并且存在幺元且每个元素存在逆元,又存在子集关系,因此该代数系统是舞步群的子群。
对于D选项:通过类似的方法可以证明该代数系统是子群。
综上所述,本题的正确选项为BCD。
4.证明一个代数系统是另一个代数系统的子群
解析:本题考查子群判定定理的应用。这里分别尝试使用判定定理1和判定定理3来解决这个问题,这样判定子群会比直接用定义判断快得多。
首先使用判定定理1:首先,可以通过运算证明H集合运算同样满足封闭性;对于G中的幺元单位矩阵,同样存在于H中;另外,H中任意一个元素的逆元都可以计算出来,因此可以判定该代数系统H是G的子群。
再尝试使用判定定理3:容易证明H是G的非空子集,对于H中任意两个矩阵a和b,容易证明a*b-1的结果仍然属于该集合H,由此可以快速证明H是G的子群。
可以看出,能够使用判定定理3或者2的地方就避免使用判定定理1,能够用判定定理的地方就尽量不使用定义证明子群。
5.证明一个代数系统是另一个代数系统的子群
解析:本题考查证明一个代数系统是另一个代数系统的子群,仍然采用判定定理3进行证明。
从SL集合中任取两个矩阵A和B,由于两个矩阵的行列式都为1,因此两个矩阵乘法结果的行列式也为1,由此可以判定SL是GL的子群。
6.较难的子群证明题
解析:本题考查子群的相关证明。
首先证明充分性:当AA是A的子集时,说明A上的运算※满足运算封闭性,又由于A是群G的有限非空子集,根据子群判定定理二,可以证明A是G的子群。
接着证明必要性:当A是G的子群且A是G的有限非空子集时,A上的运算※同样满足封闭性;那么就一定有AA是A的子集,证毕。
7.子群判定定理二
解析:本题考查子群判定定理二。当B是G的子集且B为有限集时,<B,※>是<G,※>的子群当且仅当B中的运算封闭。
8.指定群的子群个数的判定
解析:本题考查指定群的子群个数的计算。计算过程只需要参照子群的判定定理二即可,即有限非空的满足运算封闭性的集合。
本题中,就有{0},{0,6},{0,4,8},{0,3,6,9},{0,2,4,6,8,10}和自身共6个子群。
9.子群的元素判定
解析:本题考查子群的元素判定。
根据子群判定定理三,-36是36的逆元,那么由于子群的运算同样满足封闭性,那么48+(-36)的结果仍然在子群中,即12是A中的元素。
10.共轭子群的定义运用
解析:本题考查共轭子群的定义。可以通过共轭子群判定一个代数系统是另一个代数系统的子群。
由于H是G的子群,而M中的元素可以表示为xHx-1,由此可知M是G的共轭子群,所以M是G的子群。
11.群的性质的应用
解析:本题考查群的常见性质。
根据群的常见性质可知,如果A和B都是G的子群,那么A∪B是G的子群当且仅当A=G或者B=G,由此可以证明该题。
12.群的性质的应用
解析:本题考查群的性质的应用。
采用反证法,假设G中不存在元素不在H1内且不在H2内,则H1和H2是对集合G的一个分割,那么G中的幺元一定属于H1或H2集合中的一个。根据子群的判定定理一,只有包含有G中幺元的子集才能构成子群,那么就不能存在H1和H2都是G的子群,与假设矛盾,因此假设错误。
所以G中存在元素不属于H1也不属于H2。
13.证明一个代数系统是另一个群的正规子群
解析:本题考查正规子群的定义。
只需要证明对G中任意元素g,都有gH=Hg即可。具体证明过程略。
14.找出一个群的指定阶数的子群
解析:本题考查固定题型,即求出一个群的指定阶数的子群。有时候也会求出一个群的所有子群。
对于指定的阶数m,只需要检查群中是否存在一个元素,使得该元素的1-m次幂都属于该群。如果这样的元素存在,那么这个元素的1-m次幂就共同构成该群的一个m阶的子群。