基于主题模型的专利文本挖掘

本文探讨了文本挖掘技术在专利分析领域的应用,包括关键词追踪、形态学分析、主成分分析、潜在语义分析等方法,以及如何利用这些技术进行专利路线图绘制、专利文本相似性计算和非结构化数据的有效分析。此外,还介绍了几款基于文本挖掘技术开发的技术智能工具,如TrendPreceptor、Techpioneer等,它们在挖掘隐藏概念、文本聚类、技术路线图制定等方面发挥了重要作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

54-60
Watts 和Porter提出以追踪关键词变化的方式来探索技术主题的变化
Yoon和Park实现了一种基于关键词形态学Morphology的方法来识别有潜力的技术细节
张疑介绍了一种基于主成分分析的词凝结term Clumping方法来探索科技文献摘要中的关键词及关键短语
Fattori等人以文本挖掘来辅助绘制专利路线图,并在实际的商务案例章以德温特专利数据对方法进行了实现
Magerma探讨了以潜在语义分析进行文本专利挖掘来进行专利文本和科技文献相似性计算的可行性与准确性
Feldman等人在讨论以文本挖掘来进行非结构化数据有效分析时,以USPTO的专利数据为案例进行了受让人、发明人及对应技术之间的关系分析,同时将其可视化。

61-63
此外,文本挖掘技术也已经被成功运用在了多种技术智能工具的开发中,
TrendPreceptor
Techpioneer
VantagePoint
Aureka
等技术智能系统在挖掘隐藏概念及关系、文本聚类、文本分类以及技术路线图制定等工作中均发挥了辅助专利分析、技术分析的作用,节省大量的时间和人力物力。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值