在本文中,我们提出了一种新的即插即用的联邦学习模块,FedFed,其能够以特征蒸馏的方式来解决联邦场景下的数据异构问题。FedFed首次探索了对数据中部分特征的提取与分享,大量的实验显示,FedFed能够显著地提升联邦学习在异构数据场景下的性能和收敛速度。
论文名称:
FedFed: Feature Distillation against Data Heterogeneity in Federated Learning
论文链接:
https://arxiv.org/abs/2310.05077
代码链接:
https://github.com/visitworld123/FedFed
一、 引言
联邦学习(Federated Learning, FL)近年来引起学术界和工业界越来越多的关注,它旨在保护用户数据隐私的同时完成模型的训练。
然而,在联邦学习的场景中,由于各个联邦参与方(客户端)本身的差异(如地理位置,气候条件等客观因素的不同),导致不同客户端之间的训练数据分布可能存在较大差异,这会造成在不同客户端下训练的模型有一定的差异。进而,聚合这些有差异的模型会严重影响模型的性能。因此,如何在异构的数据分布下(也被称作non-IID)提升模型性能成为了联邦学习领域的研究重点内容。
性能-隐私困境: 为了解决异构给联邦学习带来的挑战,一项开创性工作FedAvg[1]提出在客户端本地训练模型,将本地模型传输至中心服务器,并且在中心服务器以加权聚合的方式得到全局模型。这种方法虽然解决了联邦学习中计算和通信上的多样性问题,但仍面临着由数据异构性带来的模型性能较差的问题。
现有一系列研究致力于缓解数据异构在联邦学习中带来的挑战。一些研究尝试在客户端之间共享数据信息来解决数据异构性问题,这种方法在提升联邦学习系统性能方面展现出了巨大潜力。虽然信息共享策略能够带来性能提升,但是也引入了一些隐私泄漏的风险,造成了联邦学习中的性能-隐私困境。
<