Talk|卡内基梅隆大学李博文:适用于机器人的可泛化的目标感知

在TechBeat人工智能社区的线上Talk中,卡内基梅隆大学的李博文博士探讨了如何在机器人上实现可泛化的目标感知,重点关注运动泛化性和实例泛化性,以及相关研究工作如PVT+和VoxDet。
摘要由CSDN通过智能技术生成

本期为TechBeat人工智能社区579线上Talk。

北京时间3月20日(周三)20:00,卡内基梅隆大学博士生李博文的Talk已准时在TechBeat人工智能社区开播!

他与大家分享的主题是: 适用于机器人的可泛化的目标感知”,向大家系统地介绍了如何在有限的数据上学习到可泛化的,适用于机器人的目标感知模型。

Talk·信息

主题:适用于机器人的可泛化的目标感知

嘉宾:卡内基梅隆大学 李博文

时间:北京时间 3月20日(周三)20:00

地点:TechBeat人工智能社区

点击下方链接,即可观看视频!

TechBeatTechBeat是荟聚全球华人AI精英的成长社区,每周上新来自顶尖大厂、明星创业公司、国际顶级高校相关专业在读博士的最新研究工作。我们希望为AI人才打造更专业的服务和体验,加速并陪伴其成长。icon-default.png?t=N7T8https://www.techbeat.net/talk-info?id=858

Talk·介绍

视觉目标感知是计算机视觉研究已久的问题。然而,在机器人上部署目标感知算法常常会遇到泛化性的局限性。换言之,离线的大规模数据集只能提供有限的目标特征与运动模式,如何在有限的数据上学习到可泛化的,适用于机器人的目标感知模型是本次talk的重点。具体而言,我将从运动泛化性与实例泛化性两个角度讨论这一主题。

Talk大纲

运动泛化性

1、机器人部署时的感知延迟问题与已有解决措施

2、预测性目标跟踪框架概览(PVT++)

3、PVT++在设计时的三个关键点

4、实验结果

实例泛化性

1、现实生活中的实例感知问题

2、已有的二维表征方案及其问题

3、可感知实例三维结构的检测方法VoxDet

4、建立实例感知数据集

5、实验结果

Talk·预习资料

Image

论文链接:

https://arxiv.org/abs/2005.10420

Image

论文链接:

https://arxiv.org/abs/2211.11629

Image

论文链接:

https://arxiv.org/abs/2204.10776

Image

论文链接:

https://arxiv.org/abs/2305.17220

Talk·提问交流

在Talk界面下的【交流区】参与互动!留下你的打call🤟和问题🙋,和更多小伙伴们共同讨论,被讲者直接翻牌解答!

你的每一次贡献,我们都会给予你相应的i豆积分,还会有惊喜奖励哦!

Talk·嘉宾介绍

Image

李博文

卡内基梅隆大学·博士生

我是卡内基梅隆大学机器人研究所在读博士生,师从Sebastian Scherer教授。我的主要研究方向是机器人学,视觉感知,与神经符号推理。李博文曾以第一作者身份在ECCV,ICCV,NeurIPS等计算机视觉顶级会议发表多篇研究论文。其中关于实例三维感知的成果VoxDet入选为NeurIPS 2023 Spotlight。

个人主页: 

https://www.techbeat.net/grzytrkj?id=38301


关于TechBeat人工智能社区

TechBeat(www.techbeat.net)隶属于将门创投,是一个荟聚全球华人AI精英的成长社区。

我们希望为AI人才打造更专业的服务和体验,加速并陪伴其学习成长。

期待这里可以成为你学习AI前沿知识的高地,分享自己最新工作的沃土,在AI进阶之路上的升级打怪的根据地!

更多详细介绍>>TechBeat,一个荟聚全球华人AI精英的学习成长社区

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值