Visual Inertial Odometry
文章平均质量分 60
Hansry
我希望能有个明亮的落地窗,每天都晒一晒太阳。。。
展开
-
VSLAM之边缘化 Marginalization 和 FEJ (First Estimated Jocobian)
文章目录1. 前言2. 舒尔补 (Schur complement) 的应用:边界概率,条件概率1. 前言本博客主要介绍了VINS-Mono中边缘化的相关知识,由于VINS-Mono中只是提及了边缘化的策略并没有提及边缘化信息传递的原理,因此本博客主要参考了崔化坤的《VINS论文推导及代码解析》和深蓝学院的VIO课程。VINS-Mono的边缘化与在《SLAM14讲》中也有提及边缘化 (可看博...原创 2020-02-20 22:20:37 · 5726 阅读 · 4 评论 -
VINS-Mono之外参标定和视觉IMU联合初始化
文章目录1.前言2. 利用旋转约束估计外参数旋转qcbq^{b}_{c}qcb1.前言本博客主要介绍VINS-Mono初始化时相机与IMU对齐,主要包括相机到IMU的外参估计、陀螺仪偏置、相机位移和估计空间点的尺度、重力加速度、每帧速度,主要参考了深蓝学院的VIO课程及博客VINS-Mono理论学习——视觉惯性联合初始化与外参标定和崔华坤的《VINS 论文推导及代码解析》。总体而言,视觉I...原创 2020-02-18 00:40:21 · 2311 阅读 · 0 评论 -
VINS-Mono之后端非线性优化 (目标函数中视觉残差和IMU残差,及其对状态量的雅克比矩阵、协方差递推方程的推导)
1. 前言之前看过崔华坤的《VINS论文推导及代码解析》还有深蓝学院的VIO课程,对VINS的后端非线性优化有了较为清晰的认识,但是一直没有时间整理写成笔记,最近看到Manni的博客VINS-Mono理论学习——后端非线性优化 概括得很不错,针对这三份资料还有自己的一些理解重新整理下,感谢优秀的大佬们提供的参考资料。2. 非线性最小二乘尽管非线性最小二乘是很常见的问题,可参考《SLAM14讲...原创 2020-02-09 20:44:13 · 3342 阅读 · 1 评论 -
VINS-Mono之IMU预积分,预积分误差、协方差及误差对状态量雅克比矩阵的递推方程的推导
一.前言本博客基本上借鉴了崔华坤的《VINS论文推导及代码解析》和 VINS-Mono理论学习——IMU预积分 Pre-integration (Jacobian 协方差)的内容,有些地方加入自己一些理解。VINS-MONO论文中的IV-B. IMU Pre-integration介绍了IMU预积分模型,Foster的倆篇论文对IMU预积分理论进行详细分析。为什么需要对IMU进行预积分?传...原创 2020-02-07 21:47:50 · 5515 阅读 · 10 评论