AI时代的工作与思考模式转变(Code is cheap,show me your Talk!)

#AI的出现,是否能替代IT从业者?#

大语言模型与人工智能工具的普及,正在快速重塑我们的工作模式和价值体系。它不仅仅是“提高效率”的问题,而是正在改写我们工作的核心重心。那些曾被视为金科玉律的工作信条——“Idea is cheap, show me your code”、“专注深度,警惕广度”——正在AI的冲击下快速瓦解。当机器开始完美执行,人类的终极价值将回归创造性本身。

新时代"电脑架构"

工作模式的颠覆性重构

在 AI 之前,很多时间与精力消耗在具体的执行上:

  • 编写一行一行的代码;

  • 为文档搜集资料、打磨细节;

  • 通过冗长的会议来对齐想法与语境。

那时候流行的价值观是:

“Idea is cheap,真正花时间去讨论和实现才算数。”

“不要贪广度,要深度钻研。”

然而在 AI 工具普及之后,这一切都被颠覆了:

  • 代码:AI 可以承担大部分编写工作,人只需要像项目经理一样提出需求、反馈迭代。我不再逐行敲击代码,而是将需求拆解为prompt链,指挥AI生成模块并进行“人肉Code Review”。角色悄然转变为技术项目经理。

  • 文档:由 AI 起草,人则负责结构、方向与修订。耗费数日撰写技术文档的场景不复存在。AI根据框架自动填充内容,人类只需聚焦逻辑结构与核心洞见。

  • 想法验证的“光速迭代”:曾需要数周开发的POC(概念验证),如今在对话窗口中即时模拟验证。当试错成本趋近于零,创意的价值开始指数级飙升。Idea is not Cheap!!!

  • 讨论:想法快速对齐,冗长会议和套话变得多余,独立作战和小支线协作更加普遍。冗长的需求对齐会议失去意义——团队成员通过共享AI输出瞬间达成认知同步。跨职能独立作战成为常态,传统团队管理逻辑遭遇挑战。

分享最近一年的事实:中科院某研究所里,之前很多年例行的80%讨论班都消失了,还需要对齐概念吗?很多问题还需要和人讨论吗?事实胜于雄辩…

换句话说,人的角色正从执行者转向管理者、导演和决策者

快速升维的能力加速贬值的技能
▶ 问题定义与抽象能力▼ 机械编码/文书生产
▶ 跨领域模式识别▼ 单一纵深的知识囤积
▶ Prompt工程思维▼ 低效会议与知识对齐
▶ 资源调度与战略预判▼ 工具性语言/框架熟练度
▶ 风险决策与伦理判断▼ 信息检索与记忆能力

数学家的微分几何推演、程序员的语法调试、律师的条款检索…这些曾构筑职业护城河的能力,正被AI快速侵蚀。象牙塔式专家的困境:他们引以为傲的深度,在通用AI面前成了狭窄的孤岛.

人和人不再直接交流

团队与人才被再定义,AI正在重塑团队和人才的价值结构:

  • 团队价值下降:很多对齐、重复劳动、低效沟通被消解,个体借助 AI 就能完成过去需要小团队才能做的事。

  • 深度专才的门槛降低:AI拉平了学科壁垒,单一领域的深度研究者优势减弱。护城河即将消失。

  • 跨界整合人才崛起:具备跨学科理解和整合能力的人,反而能发挥更大作用。学得杂的好处会更加明朗!!

创造性张力:Idea的价值重估

从执行驱动到创造驱动,AI 的引入,本质上推动了工作重心的迁移:

  • 过去:执行力驱动,靠体力与精力堆砌产出。

  • 现在:创造力驱动,靠问题定义、创意孵化、资源调配来拉开差距。

过去,Idea 被视为“廉价的货币”,因为从想法到验证的过程成本太高。如今,AI 能在短时间内帮我们快速建模、模拟和原型验证,想法的含金量瞬间提升。

  • Idea 不再 cheap:我们正进入强化学习式的工作循环:思考 → 表达 → AI验证 → 即时反馈 → 迭代

  • 真正的瓶颈变成了:如何提出好问题,维护好的知识和探索体系,如何筛选值得扩展的思路

这意味着未来更需要的不是“象牙塔型”的高智商人才,而是 “乔布斯型” 的综合型人才:懂用户体验,懂技术可能性,也能把创意转化为产品和价值。乔布斯的遗产在此刻焕发新生。那个坚持"科技与人文十字路口"的叛逆者,其核心能力——需求洞见、系统思维、审美判断——恰恰是AI最难复制的维度。当执行层被机器接管,这些"无用之用"终将显现决定性价值。

分享一条我朋友对AI冲击工作模式的见解:其实价值一直是这样的,有点像是AI的演进把泡沫戳破了。

我对他见解的评论:最后我们会反过来审视不久的过去(比如2010年代),那些本来被划分为高智商邻域(比如数学、计算机)的日常工作,也充斥了很多低效、不必要、反直觉的工作和习惯(比如过多的讨论班、反复创造新的语言描述同一个原理或规律、重复造轮子、过多使用文本而非图片、门槛导致的只有入门和专家两种人、应用和理论脱节…),洗牌正在开始,AI能力已经足够了,只是人的习惯和思维惯性还没反应过来.未来必定会经历长时间的震荡和规则重组!

震荡期的生存法则如何?观察身边先行者的实践,三条铁律逐渐清晰:

  1. 成为“人机接口”专家:不追求比AI更懂技术细节,而专精于将人类意图和idea转化为机器可理解的指令;

  2. 修炼跨学科通感:在AI消除知识获取成本后,真正的创新诞生于知识和知识之间的连接;

  3. 拥抱不确定性经济:当验证周期压缩至分钟级,敢于用20%时间验证疯狂想法,比追求100%完成度更重要;

站在2025年回望,2010年代的程序员伏案debug至深夜、学者为查证某个公式翻阅典籍、产品团队为需求文档争吵不休的场景,将显得如同工业革命前的手工作坊般遥远。这不是工作岗位的消亡,而是劳动价值的迁徙。当AI滤去工作的“杂质”,人更加会明白自己是谁;未经审视的执行不值得追求,而无法被机器复制的创造,才是人之为人的证明.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值