本文来源Datawhale分享的深度学习资料
- 深度学习发展趋势
- 1958: Perceptron (linear model)
- 1969: Perceptron has limitation
- 1980s: Multi-layer perceptron
- Do not have significant difference from DNN today
- 1986: Backpropagation
- Usually more than 3 hidden layers is not helpful
- 1989: 1 hidden layer is “good enough”, why deep?
- 2006: RBM initialization (breakthrough)
- 2009: GPU
- 2011: Start to be popular in speech recognition
- 2012: win ILSVRC image competition
- 深度学习三个步骤
-把冰箱门打开
-把大象装进冰箱
-关门
- Step1:神经网络(Neural network)
- Step2:模型评估(Goodness of function)
- Step3:选择最优函数(Pick best function)
Step1:神经网络
神经网络(Neural network)里面的节点,类似我们的神经元。
神经网络也可以有很多不同的连接方式,这样就会产生不同的结构(structure)在这个神经网络里面,我们有很多逻辑回归函数,其中每个逻辑回归都有自己的权重和自己的偏差,这些权重和偏差就是参数。
需要通过手动设计各个神经元的链接方式
- 为什么叫全链接呢?
- 因为layer1与layer2之间两两都有连接,所以叫做Fully Connect;
- 为什么叫前馈呢?
- 因为现在传递的方向是由后往前传,所以叫做Feedforward。
深度的理解
那什么叫做Deep呢?Deep = Many hidden layer。那到底可以有几层呢?这个就很难说了,以下是老师举出的一些比较深的神经网络的例子
- 2012 AlexNet:8层
- 2014 VGG:19层
- 2014 GoogleNet:22层
- 2015 Residual Net:152层
- 101 Taipei:101层
随着层数变多,错误率降低,随之运算量增大,通常都是超过亿万级的计算。对于这样复杂的结构,我们一定不会一个一个的计算,对于亿万级的计算,使用loop循环效率很低。
这里我们就引入矩阵计算(Matrix Operation)能使得我们的运算的速度以及效率高很多:
矩阵计算
如下图所示,输入是 [ 1 − 2 − 1 1 ] \begin{bmatrix}&1&-2\\ &-1&1\end{bmatrix} [1−1