1、从独立性假设到联合概率链
朴素贝叶斯中使用的独立性假设为
去掉独立性假设,有下面这个恒等式,即联合概率链规则
其中, xi x i 代表一个词,联合概率链规则表示句子中每个词都跟前面一个词有关,而独立性假设则是忽略了一个句子中词与词之间的前后关系。
2、从联合概率链规则到n-gram语言模型
联合概率链规则是考虑了句子中每个词之间的前后关系,即第n个词
xn
x
n
与前面
n−1
n
−
1
个词
x1,x2,..,xn−1
x
1
,
x
2
,
.
.
,
x
n
−
1
有关,而n-gram语言模型模型则是考虑了n个词语之间的前后关系,比如
n=2
n
=
2
时(二元语法(bigram,2-gram)),第n个词
xn
x
n
与前面
2−1=1
2
−
1
=
1
个词有关,即
比如 n=3 n = 3 时(三元语法(trigram,3-gram)),第n个词 xn x n 与前面 3−1=2 3 − 1 = 2 个词有关,即
公式(3)(4)即马尔科夫假设(Markov Assumption):即下一个词的出现仅依赖于它前面的一个或几个词。
3、N-gram语言模型与马尔科夫假设
如果对向量 X 采用条件独立假设,就是朴素贝叶斯方法。
如果对向量 X 采用马尔科夫假设,就是N-gram语言模型。