【数学】对向量的求导和Jacobian矩阵的几何意义与Hessian矩阵

本文介绍了函数对向量求导的概念,重点讨论了雅可比矩阵的几何意义及其在积分坐标变换中的作用,强调了行列式在面积比中的角色。此外,还提及了海森矩阵在多元实值函数二阶导数中的应用,特别是在最优化算法中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

算是上一篇【数学】均匀分布生成其他分布的方法的一个数学基础补遗吧。

函数对向量求导

Jacobian矩阵相当于通用型的函数的一阶导数,Hessian矩阵是一个 RnR 的函数的二阶导数。
这就牵扯到了函数对向量求导的运算,详细的话详见:对向量求导这篇百度文库。
本质上来说,一个函数对(行)向量求导,本质上还是单独为向量的每个元素进行求导的。
比如 RnR 的函数 f(a⃗ ) ,则其导数【即梯度】为 f=[fa1,fa1,,fan] ,此时其一阶导数就变成一个 RnRn 的函数
对于 RnRm 的函数,其可以看成一个长度为m列向量对一个长度为n行向量求偏导。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值