智能对话 | 使用 Java实现 智能对话机器人

人工智能

目前人工智能与深度学习顺应了互联网时代潮流,人机对话已经成为目前人工智能领域中非常热门的处理技术。其中基于深度学习的人机对话交换系统(智能机器人)是人工智能最有潜力的领域,甚至被称作人工智能的皇冠。相对于传统的页面简单交互,人机对话系统更能读懂你的内心世界与想法。

机器人人机对话系统主要涉及深度学习、机器学习、特征过程、自然语言处理等核心知识。

技术领域

在此,先推荐一下学习的主要技术领域:

数学

矩阵计算主要研究单个矩阵或多个矩阵相互作用时的一些性质。机器学习的各种模型都大量涉及矩阵相关性质,比如PCA其实是在计算特征向量,MF其实是在模拟SVD计算奇异值向量。人工智能领域的很多工具都是以矩阵语言来编程的,比如主流的深度学习框架,如Tensorflow、PyTorch等无一例外。

概率统计是机器学习的基础。常用的几个概率统计概念:随机变量、离散随机变量、连续随机变量、概率密度/分布(二项式分布、多项式分布、高斯分布、指指数族分布)、条件概率密度/分布、先验密度/分布、后验密度/分布、最大似然估计、最大后验估计。

最优化方法被广泛用于机器学习模型的训练。机器学习中常见的几个最优化概念:凸/非凸函数、梯度下降、随机梯度下降、原始对偶问题。

机器学习与深度学习

周志华的西瓜书《机器学习》

自然语言处理

《统计自然语言处理基础》、王斌老师翻译的中文版《信息检索导论》

使用Java实现智能对话机器人

需求:使用Java实现智能对话机器人

技术点 & 开发工具: Myeclipse、JDK1.8、HTTPS、JSON、jsp、图灵

开发步骤:

1:首先注册图灵开发者账号,并创建机器人,如下图

2:创建机器人之后,获取机器人APIKEY值

3:新建一个maven project,如下图:

4:导入解析json格式的jar包

<dependency>
    <groupId>org.json</groupId>
    <artifactId>json</artifactId>
    <version>20180130</version>
</dependency>

5:添加如下测试代码:

public class TalkUtil {

     //机器人对应的APIkey--图灵平台获取
    public static final String API_KEY = "922a7bfffcd9463fbafa58d88d64d988";
    public static final String API_URL = "http://www.tuling123.com/openapi/api";

    /**
     * @param msg 需要发送的消息
     * @return
     */
    private String setParameter(String msg) {
        try {
            return API_URL + "?key=" + API_KEY + "&info=" + URLEncoder.encode(msg, "utf-8");
        } catch (UnsupportedEncodingException e) {
            e.printStackTrace();
        }
        return null;
    }

    /**
     * 拿到消息回复的内容
     * @param json 请求接口得到的JSON
     * @return text的部分
     */
    private String getString(String json){
        try {
            JSONObject object = new JSONObject(json);
            return object.getString("text");
        } catch (JSONException e) {
            e.printStackTrace();
        }
        return null;
    }

    /**
     * 提供对外公开的方法用于最终拿到机器人回复的消息
     * @param msg 传入你需要发送的信息
     * @return 机器人对你的回复
     */
    public String getMessage(String msg){
        return getString(getHTML(setParameter(msg)));
    }


    private String getHTML(String url) {
        StringBuffer buffer = new StringBuffer();
        BufferedReader bufferedReader = null;
        try {
            URL u = new URL(url);
            HttpURLConnection connection = (HttpURLConnection) u.openConnection();
            bufferedReader = new BufferedReader(new InputStreamReader(connection.getInputStream()));
            String line = "";
            while ((line = bufferedReader.readLine()) != null) {
                buffer.append(line);
            }
        } catch (MalformedURLException e) {
            e.printStackTrace();
        } catch (IOException e) {
            e.printStackTrace();
        }finally {
            try {
                bufferedReader.close();
            } catch (IOException e) {
                e.printStackTrace();
            }
        }
        return buffer.toString();
    }

    public static void main(String[] args) {
        TalkUtil util = new TalkUtil();
        Scanner scanner = new Scanner(System.in);//控制台输入
        while (scanner.hasNext()){
            //直接输出机器人的回复
            System.err.println("Ta 对你说 ----> " + util.getMessage(scanner.nextLine()));
        }
    }

}

6:控制台测试结果,进行智能聊天对话:

有兴趣的大佬,可以添加前端聊天窗口页面,进行聊天

原文发布于微信公众号 - 码神联盟(lkchatspace)

原文发表时间:2018-08-18

  • 10
    点赞
  • 71
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
使用Scala实现基于循环神经网络(RNN)的对话机器人,您需要进行以下步骤: 1. 准备数据集:您需要准备一个包含对话数据的数据集。可以从公共数据集中获取,也可以自己创建。 2. 数据预处理:对数据集进行预处理,包括分词、标记化、序列化等操作,以便在RNN中进行处理。 3. 构建RNN模型:在Scala中,您可以使用深度学习框架如TensorFlow或PyTorch来构建RNN模型。这个模型应该能够将输入序列映射到输出序列,从而实现对话。 4. 训练模型:使用准备好的数据集训练模型,调整模型参数以优化模型性能。您可以使用交叉验证技术来评估模型的性能。 5. 测试模型:在训练模型之后,使用测试数据集测试模型的性能。您可以使用各种指标来评估模型的性能,例如准确性、召回率、F1分数等。 6. 部署模型:将训练好的模型部署到您的应用程序中,以便进行实时对话。 以下是一些Scala深度学习框架的例子: 1. TensorFlow for Scala:TensorFlow是一个流行的深度学习框架,Scala也有相应的绑定库。使用这个库可以使用Scala来构建和训练RNN模型。 2. Deeplearning4j:这是一个Java编写的深度学习库,也可以在Scala中使用。它支持循环神经网络,并提供了一些预训练的模型。 3. Breeze:这是一个纯Scala的数学库,提供了矩阵运算、线性代数和统计分析等功能。虽然它不是专门为深度学习设计的,但它可以与其他深度学习库配合使用,以提供更多的数学支持。 在实现基于RNN的对话机器人时,您需要考虑以下问题: 1. 对话历史如何传递给RNN模型? 2. 如何处理用户输入中的噪声和错别字? 3. 如何在模型训练期间避免过拟合? 4. 如何评估模型的性能? 5. 如何处理模型无法识别的输入? 以上是实现基于RNN的对话机器人的一般步骤和一些注意事项。具体实现过程需要根据您的应用程序的特定需求进行调整。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值