密码学题目

  1. 设n级线性反馈移位寄存器的特征多项式为 p ( x ) p(x) p(x),初始状态为 ( a 1 , a 2 , … , a n ) = ( 00 … 01 ) (a_1,a_2,\mathellipsis,a_n)=(00\mathellipsis01) (a1,a2,,an)=(0001),证明输出序列的周期等于 p ( x ) p(x) p(x)的阶。
    p ( x ) p(x) p(x)的阶为 p p p,由定理2-3,有 r ∣ p r|p rp,所以 r ⩽ p r\leqslant{p} rp
    A ( x ) A(x) A(x)为序列 { a i } \{a_i\} {ai}的生成函数,并设序列 { a i } \{a_i\} {ai}的周期为 r r r,则显然有 A ( x ) p ( x ) = ϕ ( x ) A(x)p(x)=\phi{(x)} A(x)p(x)=ϕ(x)
    又有 A ( x ) = a 1 + a 2 x + … + a r x r − 1 + x r ( a 1 + a 2 x + … + a r x r − 1 ) + … A(x)=a_1+a_2x+\mathellipsis+a_rx^{r-1}+x^r(a_1+a_2x+\mathellipsis+a_rx^{r-1})+\mathellipsis A(x)=a1+a2x++arxr1+xr(a1+a2x++arxr1)+ = a 1 + a 2 x + … + a r x r − 1 1 − x r = a 1 + a 2 x + … + a r x r − 1 x r − 1 =\frac{a_1+a_2x+\mathellipsis+a_rx^{r-1}}{1-x^r}=\frac{a_1+a_2x+\mathellipsis+a_rx^{r-1}}{x^r-1} =1xra1+a2x++arxr1=xr1a1+a2x++arxr1于是 A ( x ) = a 1 + a 2 x + … + a r x r − 1 x r − 1 = ϕ ( x ) p ( x ) A(x)=\frac{a_1+a_2x+\mathellipsis+a_rx^{r-1}}{x^r-1}=\frac{\phi(x)}{p(x)} A(x)=xr1a1+a2x++arxr1=p(x)ϕ(x)又因为 ( a 1 , a 2 , … , a n ) = ( 00 … 01 ) (a_1,a_2,\mathellipsis,a_n)=(00\mathellipsis01) (a1,a2,,an)=(0001)所以 p ( x ) ( a n x n − 1 + … + a r x r − 1 ) = ϕ ( x ) x r − 1 p(x)(a_nx^{n-1}+\mathellipsis+a_rx^{r-1})=\frac{\phi(x)}{x^r-1} p(x)(anxn1++arxr1)=xr1ϕ(x) p ( x ) x n − 1 ( a n + … + a r x r − n ) = ϕ ( x ) x r − 1 p(x)x^{n-1}(a_n+\mathellipsis+a_rx^{r-n})=\frac{\phi(x)}{x^r-1} p(x)xn1(an++arxrn)=xr1ϕ(x)由于 x n − 1 x^{n-1} xn1不能整除 x r − 1 x^r-1 xr1,所以必有 x n − 1 ∣ ϕ ( x ) x^{n-1}|\phi(x) xn1ϕ(x),而 ϕ ( x ) \phi(x) ϕ(x)的次数小于 n n n,所以必有 ϕ ( x ) = x n − 1 , p ( x ) ∣ ( x r − 1 ) \phi(x)=x^{n-1}, p(x)|(x^r-1) ϕ(x)=xn1,p(x)(xr1),由 p ( x ) p(x) p(x)的阶的定义知,阶 p ⩽ r p\leqslant{r} pr,综上: p = r p=r p=r.
  2. 设密钥流是由 n n n级LFSR产生,其周期为 2 n − 1 2^n-1 2n1 i i i是任一正整数,在密钥流中考虑一下比特对 ( S i , S i + 1 ) , ( S i + 1 , S i + 2 ) , . . . , ( S i + 2 n − 3 , S i + 2 n − 2 ) , ( S i + 2 n − 2 , S i + 2 n − 1 ) (S_i,S_{i+1}),(S_{i+1},S_{i+2}),...,(S_{i+2^n-3},S_{i+2^n-2}),(S_{i+2^n-2},S_{i+2^n-1}) (Si,Si+1),(Si+1,Si+2),...,(Si+2n3,Si+2n2),(Si+2n2,Si+2n1)问有多少形如 ( S j , S j + 1 ) = ( 1 , 1 ) (S_j,S_{j+1})=(1,1) (Sj,Sj+1)=(1,1)的比特对?证明你的结论。
    由于产生的密钥流周期为 2 n − 1 2^n-1 2n1,且LFSR的级数为 n n n,所以 { S i } \{S_i\} {Si} m m m序列.
    以上比特对刚好是1个周期上,两两相邻的所有比特对,其中等于 ( 1 , 1 ) (1,1) (1,1)的比特对包含在所有大于等于2的1游程中。
    m m m序列的性质(定理2-7),所有长为 i i i的1游程 ( 1 ⩽ i ⩽ n − 2 ) (1\leqslant{i}\leqslant{n-2}) (1in2) 2 n − i − 1 2 \frac{2^{n-i-1}}{2} 22ni1个,没有长为 n − 1 n-1 n1的1游程,有1个长为n的1游程。
    长为 i ( i > 1 ) i(i>1) i(i>1)的1游程可以产生 i − 1 i-1 i1 ( 1 , 1 ) (1,1) (1,1)比特对,所以共有 ( 1 , 1 ) (1,1) (1,1)的比特对的数目 N = 2 n − 2 − 2 × ( 2 − 1 ) + 2 n − 3 − 2 × ( 3 − 1 ) + … + 2 n − i − 2 × ( i − 1 ) + … N=2^{n-2-2}\times(2-1)+2^{n-3-2}\times(3-1)+\mathellipsis+2^{n-i-2}\times(i-1)+\mathellipsis N=2n22×(21)+2n32×(31)++2ni2×(i1)+ + 2 n − ( n − 2 ) − 2 × ( n − 2 − 1 ) + n − 1 = ∑ i = 2 n − 2 2 n − i − 2 ( i − 1 ) + n − 1 = 2 n − 2 . +2^{n-(n-2)-2}\times(n-2-1)+n-1=\displaystyle\sum_{i=2}^{n-2}2^{n-i-2}(i-1)+n-1=2^{n-2}. +2n(n2)2×(n21)+n1=i=2n22ni2(i1)+n1=2n2.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Memories off

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值