acm算法之最短路问题

最短路问题就是求一个图中从一节点到另一节点的最短路径

(以下代码来自题目实例来自HDU1873)
算法一:Floyd五行算法 时间复杂度n^3
结果:直接求出全部两点之间最短路
适用:小数据,一次求多点之间最短路

//Floyd n^3 原版
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
const int inf = 100000000;
int map[205][205];

void Floyd(int n)
{
    int i,j,k;
    for(i=0;i<n;i++)
        for(j=0;j<n;j++)
            for(k=0;k<n;k++)
                if(map[j][i]+map[i][k]<map[j][k])
                    map[j][k]=map[j][i]+map[i][k];
}

int main()
{
    int n,m,i,j,x,y,z,start,end;
    while(~scanf("%d%d",&n,&m))
    {
        for(i=0;i<200;i++)
        {
            for(j=0;j<200;j++)
                map[i][j]=inf;
            map[i][i]=0;
        }
        while(m--)
        {
            scanf("%d%d%d",&x,&y,&z);
            if(z<map[x][y])
            map[x][y]=map[y][x]=z;
        }
        Floyd(n);
        scanf("%d%d",&start,&end);
        printf("%d\n",map[start][end]!=inf?map[start][end]:-1);
    }
    return 0;
}

算法二: Dijkstra 时间复杂度(m+n)log n
结果:求出一点到其他点的最短路

//Dijkstra n^2 原版
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
const int inf = 1<<30;

int n,m;
int map[300][300];
int vis[300],cast[300];

void Dijkstra(int s,int e)
{
    int i,j,min,pos;
    memset(vis,0,sizeof(vis));
    cast[s]=0;
    vis[s]=1;
    for(i=0;i<n;i++)cast[i]=map[s][i];
    for(i=1;i<n;i++)
    {
        min=inf;
        for(j=0;j<n;j++)
        {
            if(cast[j]<min&&!vis[j])
            {
                pos=j;
                min=cast[j];
            }
        }
        vis[pos]=1;
        for(j=0;j<n;j++)
        {
            if(cast[pos]+map[pos][j]<cast[j]&&!vis[j])
            cast[j]=cast[pos]+map[pos][j];
        }
    }
}
int main()
{
    int i,j,x,y,z,start,end;
    while(~scanf("%d%d",&n,&m))
    {
        for(i = 0; i<200; i++)
        {
            for(j = 0; j<200; j++)
                map[i][j] = inf;
            map[i][i] = 0;
        }
        for(i = 0; i<m; i++)
        {
            scanf("%d%d%d",&x,&y,&z);
            if(z<map[x][y])
            map[x][y] = map[y][x] = z;
        }
        scanf("%d%d",&start,&end);
        Dijkstra(start,end);
        printf("%d\n",cast[end]==inf?-1:cast[end]);
    }
    return 0;
}

*进行邻接表队列优化后 时间复杂度 n log n

//Dijkstra nlogn 队列邻接表优化
#include <stdio.h>
#include <queue>
#include <string.h>
#include <algorithm>
using namespace std;

const int inf =1<<30;
const int L=1000+10;

struct Edges
{
    int x,y,w,next;
};
struct node
{
    int d;
    int u;
    node (int dd=0,int uu=0):d(dd),u(uu) {}
    bool operator < (const node &x) const
    {
        return u>x.u;
    }
};

priority_queue<node> Q;
Edges e[L<<2];
int head[L];
int dis[L];
int vis[L];

void AddEdge(int x,int y,int w,int k)
{
    e[k].x = x,e[k].y = y,e[k].w = w,e[k].next = head[x],head[x] = k++;
    e[k].x = y,e[k].y = x,e[k].w = w,e[k].next = head[y],head[y] = k++;
}

void init(int n,int m)
{
    int i;
    memset(e,-1,sizeof(e));
    for(i = 0; i<n; i++)
    {
        dis[i] = inf;
        vis[i] = 0;
        head[i] = -1;
    }
    for(i = 0; i<2*m; i+=2)
    {
        int x,y,w;
        scanf("%d%d%d",&x,&y,&w);
        AddEdge(x,y,w,i);
    }
}

void Dijkstra(int n,int src)
{
    node mv;
    int i,j,k,pre;
    vis[src] = 1;
    dis[src] = 0;
    Q.push(node(src,0));
    for(pre = src,i = 1; i<n; i++)
    {
        for(j = head[pre]; j!=-1; j=e[j].next)
        {
            k = e[j].y;
            if(!vis[k] && dis[pre]+e[j].w<dis[k])
            {
                dis[k] = dis[pre]+e[j].w;
                Q.push(node(e[j].y,dis[k]));
            }
        }
        while(!Q.empty()&&vis[Q.top().d]==1)
            Q.pop();
        if(Q.empty())
            break;
        mv = Q.top();
        Q.pop();
        vis[pre=mv.d] = 1;
    }
}

int main()
{
    int n,m,i,j,x,y;
    while(~scanf("%d%d",&n,&m))
    {
        init(n,m);
        scanf("%d%d",&x,&y);
        Dijkstra(n,x);
        printf("%d\n",dis[y]==inf?-1:dis[y]);
    }
    return 0;
}

算法三: SPFA 时间复杂度 mn
结果:同Dijkstra

//SPFA队列优化
#include <stdio.h>
#include <string.h>
#include <queue>
#include <algorithm>
using namespace std;

const int inf = 1<<30;
const int L = 2000+10;

struct Edges
{
    int x,y,w,next;
}e[L<<2];

int head[L];
int dis[L];
int vis[L];
int cnt[L];

int relax(int u,int v,int c)//是否进行松弛
{
    if(dis[v]>dis[u]+c)
    {
        dis[v]=dis[u]+c;
        return 1;
    }
    return 0;
}

void AddEdge(int x,int y,int w,int k)
{
    e[k].x = x,e[k].y = y,e[k].w = w,e[k].next = head[x],head[x] = k++;
    e[k].x = y,e[k].y = x,e[k].w = w,e[k].next = head[y],head[y] = k++;
}

void init(int n,int m)
{
    int i;
    memset(e,-1,sizeof(e));
    for(i = 0; i<n; i++)
    {
        dis[i] = inf;
        vis[i] = 0;
        head[i] = -1;
    }
    for(i = 0; i<2*m; i+=2)
    {
        int x,y,w;
        scanf("%d%d%d",&x,&y,&w);
        AddEdge(x,y,w,i);
    }
}

void SPFA(int src)
{
    int i;
    memset(cnt,0,sizeof(cnt));
    dis[src] = 0;
    queue<int> Q;
    Q.push(src);
    vis[src] = 1;
    cnt[src]++;
    while(!Q.empty())
    {
        int u,v;
        u = Q.front();
        Q.pop();
        vis[u]=0;
        for(i = head[u];i!=-1;i=e[i].next)
        {
            v = e[i].y;
            if(relax(u,v,e[i].w)==1&&!vis[v])
            {
                Q.push(v);
                vis[v]=1;
            }
        }
    }
}

int main()
{
    int n,m,i,j,x,y;
    while(~scanf("%d%d",&n,&m))
    {
        init(n,m);
        scanf("%d%d",&x,&y);
        SPFA(x);
        printf("%d\n",dis[y]==inf?-1:dis[y]);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值