ACM_最短路

(1)   Floyd算法

Floyd算法是一种极其暴力的方法,其原理是枚举每两个点之间可能的路并找到其最小值,复杂度为O(n^3),不过其优点能够一次直接找到所有点两两之间的最短路,缺点当然就是太过暴力,一般数据上了100可能就很容易炸时间。

void Floyd()
{
	for(int k=0; k<n; k++)
		for(int i=0; i<n; i++)
		{
			if(dis[i][k] == INT_MAX) continue;
			for(int j=0; j<n; j++)
				if(dis[i][j] < dis[i][k] + dis[k][j])
					dis[i][j] = dis[i][k] + dis[k][j];
		}
}

(1)   SPFA算法

SPFA算法运用将下一个点入队列的方式来计算最小值。

#include <cstdio>
#include <cstring>
#define inf 0x3fffffff
#define maxn 1005	//最大点数
struct Edge{
    int v, w, next;
}edge[10005];
int head[maxn], tot, dis[maxn], n;
bool vis[maxn];
//注意初始化
void init()
{
    tot = 0;
    memset(head, -1, sizeof(head));
}
//注意双向加边 
void addEdge(int u, int v, int w)
{
    edge[tot].v = v;
    edge[tot].w = w;
    edge[tot].next = head[u];		//接替已有边
    head[u] = tot++;				//自己前插成为u派生的第一条边
}
void SPFA(int u)
{
    int v, w, i;
    for(i = 1; i <= n; i++)	//对于从1到n的编号
        dis[i] = inf, vis[i] = false;
    dis[u] = 0;
    queue<int> q;
    q.push (u);
    vis[u] = true;
    while(!q.empty())
    {
        u = q.front();
        q.pop();
        vis[u] = false;
        for(i = head[u]; i != -1; i = edge[i].next)
        {
            w = edge[i].w;
            v = edge[i].v;
            if (dis[u] + w < dis[v])
            {
                dis[v] = dis[u] + w;
                if (!vis[v])
                {
                    q.push (v);
                    vis[v] = true;
                }
            }
        }
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值