(1) Floyd算法
Floyd算法是一种极其暴力的方法,其原理是枚举每两个点之间可能的路并找到其最小值,复杂度为O(n^3),不过其优点能够一次直接找到所有点两两之间的最短路,缺点当然就是太过暴力,一般数据上了100可能就很容易炸时间。
void Floyd()
{
for(int k=0; k<n; k++)
for(int i=0; i<n; i++)
{
if(dis[i][k] == INT_MAX) continue;
for(int j=0; j<n; j++)
if(dis[i][j] < dis[i][k] + dis[k][j])
dis[i][j] = dis[i][k] + dis[k][j];
}
}
(1) SPFA算法
SPFA算法运用将下一个点入队列的方式来计算最小值。
#include <cstdio>
#include <cstring>
#define inf 0x3fffffff
#define maxn 1005 //最大点数
struct Edge{
int v, w, next;
}edge[10005];
int head[maxn], tot, dis[maxn], n;
bool vis[maxn];
//注意初始化
void init()
{
tot = 0;
memset(head, -1, sizeof(head));
}
//注意双向加边
void addEdge(int u, int v, int w)
{
edge[tot].v = v;
edge[tot].w = w;
edge[tot].next = head[u]; //接替已有边
head[u] = tot++; //自己前插成为u派生的第一条边
}
void SPFA(int u)
{
int v, w, i;
for(i = 1; i <= n; i++) //对于从1到n的编号
dis[i] = inf, vis[i] = false;
dis[u] = 0;
queue<int> q;
q.push (u);
vis[u] = true;
while(!q.empty())
{
u = q.front();
q.pop();
vis[u] = false;
for(i = head[u]; i != -1; i = edge[i].next)
{
w = edge[i].w;
v = edge[i].v;
if (dis[u] + w < dis[v])
{
dis[v] = dis[u] + w;
if (!vis[v])
{
q.push (v);
vis[v] = true;
}
}
}
}
}