概率随记(2)



1)随机变量的分布函数:
F(x)=P{X<=x}   -

∞<x<+∞.
表示随机变量X小于等于x时的概率,也就是随机变量落在(-∞,x]区间的概率。是一种概率的累积函数。
基本性质:F(x)>=0;0<=F(x)<=1;F(x)在-∞取0,在+∞取1;P{a<X<=b}=F(b)-F(a);P{X>a}=1-P(X<=a)=1-F(a);
2)两点分布:
P{X=k}=p^k *(1-p)^(1-k) k=0,1

3)伯努利二项分布
P{X = k} = C(n,k)p^k(1 − p)^n−k, k= 0, 1, · · ·, n
通过分布函数很容易得出F(x).
4)泊松分布

分布函数很容易得出
5)泊松定理:
证明的关键是利用(1+/x)^x 当x=>+∞时极限值是e.
泊松定理说明,当n很大,p很小的时候,二项分布可以用泊松分布来近似替代。

6)均匀分布:
  概率密度函数:f(x)=1/(b-a) (a<=x<=b),其它为0.利用积分可以很容易求得F(x)=(x-a)/(b-a) (a<=x<b),x<a为0,x>=b为1.
7)指数分布:
   f(x) =λe^(−λx), x≥ 0
   f(x) = 0, x< 0.
   利用积分很容易求得F(x).
8)正态分布
   概率密度函数:
   F(x)是其在(-∞,x]的定积分。μ是随机变量X的期望,σ是随机变量的方差.μ=0,σ=1时叫标准正态分布。
9)随机向量
     f(x,y) 为概率密度函数,则落在区域G内的概率:


10)边缘分布
    实际上就是上述积分将其中一个随机变量视为常数的情况。
11)二维均匀分布:
    概率密度函数:
利用定积分很容易计算出其F(x,y)
 

12)二维正态分布


### 回答1: 首先,设当前枚举到的数为 $x$,它组成一条边的非退化三角形个数为 $f(x)$。则题目所即为 $\sum\limits_{i=A}^{B-1}\sum\limits_{j=B}^{C-1}\sum\limits_{k=C}^{D-1}f(i)f(j)f(k)$。 考虑预处理出 $f(x)$。对于一个 $x$,我们需要出有多少个 $y$ 和 $z$ 可以满足条件,使得 $x+y>z$ 且 $x+y+z>C$。由这两个条件可以得到 $z\in [\left \lceil\frac{x+y}{2}\right \rceil, C-1]$。因此,我们可以将 $[A, D]$ 中的数按照大小排序,枚举 $x$,对于每个 $x$,用双指针算出满足条件的 $y$ 和 $z$ 的个数,更新 $f(x)$。这个过程的时间复杂度为 $\mathcal{O}(D\log D)$。 接着,我们考虑如何出 $\sum\limits_{i=A}^{B-1}\sum\limits_{j=B}^{C-1}\sum\limits_{k=C}^{D-1}f(i)f(j)f(k)$。由于只有三个变量,我们可以先将 $\mathcal{O}(D^3)$ 的累加转化为 $\mathcal{O}(D^2)$ 的累加。 我们枚举 $i$ 和 $j$,以 $k$ 作为循环,同时记录 $\sum\limits_{k=C}^D f(k)$ 和 $\sum\limits_{k=C}^D f(k)^2$。每次枚举 $j$ 时,用类似前缀和的思想将 $i$ 的贡献加到答案中。该过程的时间复杂度为 $\mathcal{O}(D^2)$。 总时间复杂度为 $\mathcal{O}(D\log D + D^2)$。 ### 回答2: 对于一个非退化三角形,任意两边的边长之和必须大于第三边的边长。 首先,根据题目给出的条件,已知 A≤a<B≤y<C≤7≤D,可以得到以下不等式:A + B > C,A + y > C,A + z > C,B + y > C,B + z > C, y + z > C。 进一步考虑,由于A≤B≤C≤D,所以A≤(A + y + z)/2≤(B + y + z)/2≤(C + y + z)/2≤(D + y + z)/2。 因此,我们可以设A + y + z = p,其中p表示三边长度之和。由于A≤(A + y + z)/2,所以A≤p/2,所以A的取值范围是[1, p/2]。 对于A的每一个取值,我们可以根据A + y + z = p的形式,得到y + z = p - A,然后再根据y + z > C,可以得到z > p - A - C。 再根据y + z > B,可以得到z > p - A - B。因此,z的取值范围是[p - A - C + 1, p - A - B]。 因此,对于固定的A和p,满足A≤a<B≤y<C≤7≤D的非退化三角形的个数等于z的取值范围的个数,即 p - A - B - C + 1。 所以,我们需要对A和p进行遍历,计算满足条件的非退化三角形的个数。 总结起来,我们可以得到以下算法: 1. 初始化非退化三角形的个数为0。 2. 对于p从A到p/2的值,依次计算非退化三角形的个数。 3. 对于A从1到p/2的值,依次计算非退化三角形的个数,即 p - A - B - C + 1。 4. 将计算得到的非退化三角形的个数累加到总数中。 5. 输出总的非退化三角形的个数。 由于总的运算次数是O(p^2),p最大为5*10^5,所以该算法的时间复杂度为O(2.5*10^10),可以满足题目要
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值