关于专利的第一发明人及其排序的差别。

一、关于第一发明人

专利发明人是指对发明创造的实质性特点作出创造性贡献的人。在完成发明创造过程中,只负责组织工作的人、为物质技术条件的利用提供方便的人或者从事其他辅助工作的人,不是发明人。

专利发明人到底可以有多少名,这一点从理论上说是没有限制的,愿意有多少是多少,但我们也应该清楚,发明人适中即可,没有必要需要很多很多的人。而且我们常说的专利发明人是指对专利技术创造有过贡献的人,一般四五名足够了。至于以后的发明人则没有什么实际意义,只是说我参与过,不会享受一些专利带来的好处。而有过贡献的发明人,肯定也能按贡献大小排序,这个排序往往就是专利发明人排名的顺序,而排名第一位置的发明人,又称之为专利的第一发明人。

二、排序地位的差别

(1)法律上没差别

《专利法》《专利法实施细则》《专利审查指南》等法律法规并没有规定发明人的次序有何差别,也就是说,法律上第一发明人或设计人与第四发明人或设计人,都没差别。

(2)第一发明人需填写身份证号

在《专利审查指南》(2010版,下同)中明确规定,申请书中第一发明人需要填写身份证号,之后的第二、第三、第四等只需填写名字。一般而言,在现实生活中,第一发明人会默认是对该项发明做出最重要贡献的研究人员。

(3)第一发明人的身份、立场有优势

身份证号可以有效区别同名同姓,明确发明人身份,减少纠纷风险,在各种场合都较有说服力。第一发明人作为研发团队中最重要的一员,与发明人权益有关的事务手续或程序需签字确认或提供证据,身份、立场相比后面的发明人,有一定的优势。

(4)第一发明人有利于评职称、加分

在很多职称评审中最看重的是第一发明人,各个单位对此要求不同、加分也不同,有的第二、第三发明人也承认,有的则要求必须是第一发明人才能加分或有资格。

内容概要:本文档详细介绍了如何使用MATLAB实现粒子群优化算法(PSO)优化极限学习机(ELM)进行时间序列预测的项目实例。项目背景指出,PSO通过模拟鸟群觅食行为进行全局优化,ELM则以其快速训练强泛化能力著称,但对初始参数敏感。结合两者,PSO-ELM模型能显著提升时间序列预测的准确性。项目目标包括提高预测精度、降低训练时间、处理复杂非线性问题、增强模型稳定性鲁棒性,并推动智能化预测技术的发展。面对数据质量问题、参数优化困难、计算资源消耗、模型过拟合及非线性特征等挑战,项目采取了数据预处理、PSO优化、并行计算、交叉验证等解决方案。项目特点在于高效的优化策略、快速的训练过程、强大的非线性拟合能力广泛的适用性。; 适合人群:对时间序列预测感兴趣的研究人员、数据科学家以及有一定编程基础并希望深入了解机器学习优化算法的工程师。; 使用场景及目标:①金融市场预测,如股票走势预测;②气象预报,提高天气预测的准确性;③交通流量预测,优化交通管理;④能源需求预测,确保能源供应稳定;⑤医疗健康预测,辅助公共卫生决策。; 其他说明:文档提供了详细的模型架构描述MATLAB代码示例,涵盖数据预处理、PSO优化、ELM训练及模型评估等关键步骤,帮助读者全面理解实践PSO-ELM模型。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值