药物设计中的马尔可夫状态模型

MSM是根据分子动力学(MD)的时间序列构建的,该时间序列可以通过经典的MD模拟生成。MSM的几个功能可用于合理的药物设计。经过验证的MSM的离散化特别适合从构象集合中提取有意义的代表,因为离散化会产生少量的微状态并反映自由能态的特征。寿命长的构象由一组微状态组成,这些微状态在该组内显示出较高的转变速率,而在该组之外显示出向低态的低转变速率。贝叶斯凝聚聚类引擎(BACE)算法使用观察到的跃迁计数从MSM中提取长期存在的构象。通过根据贝叶斯因子迭代合并微状态并重新计算贝叶斯因子矩阵,该算法将微状态聚合为长寿命构象。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值