MSM是根据分子动力学(MD)的时间序列构建的,该时间序列可以通过经典的MD模拟生成。MSM的几个功能可用于合理的药物设计。经过验证的MSM的离散化特别适合从构象集合中提取有意义的代表,因为离散化会产生少量的微状态并反映自由能态的特征。寿命长的构象由一组微状态组成,这些微状态在该组内显示出较高的转变速率,而在该组之外显示出向低态的低转变速率。贝叶斯凝聚聚类引擎(BACE)算法使用观察到的跃迁计数从MSM中提取长期存在的构象。通过根据贝叶斯因子迭代合并微状态并重新计算贝叶斯因子矩阵,该算法将微状态聚合为长寿命构象。
药物设计中的马尔可夫状态模型
最新推荐文章于 2024-03-27 00:49:46 发布