一元三次方程的实数根
一元三次方程的一般形式
一元三次方程的一般形式为
ax3+bx2+cx+d=0,a≠0.
令 x=y−b3a ,则原式变成
a(y−b3a)3+b(y−b3a)2+c(y−b3a)+d=0,a(y3−by2a+b2y3a2−b327a3)+b(y2−2by3a+b29a2)+c(y−b3a)+d=0,ay3−by2+b23ay−b327a2+by2−2b23ay+b39a2+cy−bc3a+d=0,ay3+(c−b23a)y+(d+2b327a2−bc3a)=0,y3+(ca−b23a2)y+(da+2b327a3−bc3a2)=0.
如此一来二次项就不见了,化成 y3+3py+2q=0 ,其中 p=c3a−b29a2 , q=d2a+b327a3−bc6a2 。
方程 y3+3py+2q=0 的实数根
令 Δ=q2+p3 ,则
(i)
当
Δ>0
时,方程只有一个实根。
y=−q+Δ−−√−−−−−−−−√3+−q−Δ−−√−−−−−−−−√3.
(ii) 当 Δ=0 时,方程有三个实根,其中至少有两个相等的实根。
y1=−2q√3,y2=y3=q√3.
(iii) 当 Δ<0 时,方程有三个不等实根。
令
α=13arccos−q−p−−−√p2
,则
y1=2−p−−−√cosα,y2=2−p−−−√cos(α+120∘),y3=2−p−−−√cos(α+240∘).
C++代码实现
// π
const double PIE = 3.1415926535897932384626433832795;
// 求一个实数的立方根
static double SolveCubicRoot(double value);
// 求一元一次方程的实根:ax+b=0
static std::vector<double> SolveLinearEquation(double a, double b);
// 求一元二次方程的实根:ax^2+bx+c=0
static std::vector<double> SolveQuadraticEquation(double a, double b, double c);
// 求一元三次方程的实根:ax^3+bx^2+cx+d=0
std::vector<double> SolveCubicEquation(double a, double b, double c, double d)
{
// 判断三次项系数是否为零
if (a == 0)
{
return SolveQuadraticEquation(b, c, d);
}
std::vector<double> root;
// 系数
double p = (c / a - b * b / (3 * a * a)) / 3;
double q = (d / a + 2 * b * b * b / (27 * a * a * a) - b * c / (3 * a * a)) / 2;
double diff = -b / (3 * a);
// 判别式
double delta = p * p * p + q * q;
if (delta > 0)
{
// 方程只有一个实根
double sqrtDelta = sqrt(delta);
root.push_back(SolveCubicRoot(-q + sqrtDelta) + SolveCubicRoot(-q - sqrtDelta));
}
else if (delta < 0)
{
// 方程有三个不等的实根
double angle = acos(-q * sqrt(-p) / (p * p)) / 3;
root.push_back(2.0 * sqrt(-p) * cos(angle));
root.push_back(2.0 * sqrt(-p) * cos(angle + 2 * PIE / 3));
root.push_back(2.0 * sqrt(-p) * cos(angle + 4 * PIE / 3));
}
else
{
// 方程有三个实根,其中至少有两个相等的实根
if (q == 0)
{
root.push_back(0);
}
else
{
root.push_back(SolveCubicRoot(q));
root.push_back(-2 * SolveCubicRoot(q));
}
}
// 将结果加上余量
for (int i = 0, maxSize = root.size(); i < maxSize; ++i)
{
root[i] += diff;
}
return root;
}
double SolveCubicRoot(double value)
{
return value > 0 ? pow(value, 1.0 / 3) : -pow(-value, 1.0 / 3);
}
std::vector<double> SolveLinearEquation(double a, double b)
{
std::vector<double> root;
// 判断一次项系数是否为零
if (a != 0)
{
root.push_back(-b / a);
}
return root;
}
std::vector<double> SolveQuadraticEquation(double a, double b, double c)
{
// 判断二次项系数是否为零
if (a == 0)
{
return SolveLinearEquation(b, c);
}
std::vector<double> root;
// 计算判别式
double delta = b * b - 4 * a * c;
if (delta > 0)
{
// 方程有两个不等的实根
root.push_back((-b + sqrt(delta)) / (2 * a));
root.push_back((-b - sqrt(delta)) / (2 * a));
}
else if (delta == 0)
{
// 方程有两个相等的实根
root.push_back(-b / (2 * a));
}
return root;
}