多元函数第八:连通性

本文阐述了拓扑空间中连通性的定义,通过实例展示了如何判断一个集合是否为连通集。证明了在实数拓扑空间中,连通集与区间是等价的,并通过连续函数的性质推导出中值定理。讨论了相对拓扑和连续函数的概念,为理解拓扑学的基本原理提供了基础。
摘要由CSDN通过智能技术生成

定义: S 0 S_0 S0是一个拓扑空间。我们说集合 S ⊂ S 0 S\subset S_0 SS0是非连通的(disconnected),如果存在相对于 S S S的开集A和B使得 S = A ∪ B S=A\cup B S=AB A ∩ B = ∅ A\cap B=\emptyset AB=。如果 S S S不是非连通的,则称 S S S是连通的(connected)。

如果 S 0 S_0 S0是连通的,我们称 S 0 S_0 S0是连通的拓扑空间。

例. S 0 = R S_0=\mathbb{R} S0=R是实数拓扑空间。那么,集合 S = [ 0 , 1 ] ∪ [ 2 , 3 ] S=[0,1]\cup[2, 3] S=[0,1][2,3]是非连通的。为了说明这点,考虑到A=[0, 1]和B=[2, 3]。由于 A = ( − 1 , 3 / 2 ) ∩ S A=(-1, 3/2)\cap S A=(1,3/2)S,因此A是相对于S的开集。同理,B也是相对于S的开集。又因为A与B显然不交,故S是非连通的。

由连通性,可以给出区间的严格定义。

定义 我们说 R \mathbb{R} R上的集合J是一个区间,如果对任意的 x , y ∈ J , x < y x, y\in J, x< y x,yJ,x<y [ x , y ] ⊂ J [x,y]\subset J [x,y]J

注意 根据上面的定义,单点集也是一个区间。

命题 对于 R \mathbb{R} R上的子集S,它是连通集当且仅当它是一个区间。

证明. 充分性。若S是一个区间,但它不连通。那么S可以表示成 S = ( A ′ ∩ S ) ∪ ( B ′ ∩ S ) S=(A'\cap S) \cup (B'\cap S) S=(AS)(BS),其中 A ′ A' A B ′ B' B

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值