多元函数第七:相对拓扑

一般拓扑学,最重要的作用,是将邻域的概念进行抽象。这样的好处是使得连续函数的性质得以被最大限度地推广。我们在连续函数(1)中已经说明了,如何通过邻域来定义连续函数。因此,对邻域概念的推广,本质上是对连续函数概念的推广。连续函数(1)中的邻域是通过欧式球来定义的,由此得到的拓扑称为是欧式拓扑。由欧式拓扑推广的一个最直接的拓扑,应该是相对拓扑。相对拓扑的概念,可能很多人觉得陌生,但是由它得到的性质,却是大家耳熟能详的。如左连续,右连续,左极限,右极限等。

相对拓扑,是由相对邻域构造出来的。

定义 给定集合 S ⊆ R n S\subseteq \mathbb{R}^n SRn。对于任意的点 x ∈ S x\in S xS,它关于集合S的相对邻域 U U U满足 U = S ∩ W U=S\cap W U=SW,其中 W W W是以点 x x x为球心的欧式球。

x x x S S S的内点,那么可以构造欧式邻域 W ⊂ S W \subset S WS,此时 x x x的相对邻域 U = S ∩ W = W U=S\cap W=W U=SW=W也是 x x x的一个欧式邻域。特别地,当 S S S是一个开集,那么 S S S的每个点都存在包含于 S S S的欧式邻域。这就是为什么,我们在考虑欧式拓扑的时候,总是假设它的定义域是一个开集。然而,当 S S S不是开集时,那么 S S S中的边界点不存在包含于 S S S的欧式邻域。这样,由欧式拓扑推导出来的连续函数的性质,在边界点上不成立。引入相对邻域的概念,其目的就是解决边界点上连续函数性质的问题。关于内点和边界点的概念,参见拓扑初步(1)

定义 我们说函数 f f f x 0 x_0 x0点连续,如果对于 y 0 = f ( x 0 ) y_0=f(x_0) y0=f(x0)的任何欧式邻域V都存在 x 0 x_0 x0上的相对邻域U使得 f ( U ) ⊂ V f(U)\subset V f(U)V。如果 f f f S S S的每个点都连续,那么我们称 f f f S S S上连续。

上面的定义中,我们暗含了值域是基于欧式拓扑,而定义域是基于 S S S上的拓扑。在定义域和值域上定义不同的拓扑是很正常的。抛开拓扑的概念,我们在定义域和值域的维数都可能不同。例如,定义域可能是n维空间 R n \mathbb{R}^n Rn,值域是一个1维的实数空间 R \mathbb{R} R。而在不同维数的集合上,其对应的拓扑必然是不同的。

设集合 S = [ a , b ] S=[a,b] S=[a,b]是一个闭区间。给定点 x = a x=a x=a的一个欧式邻域 W = ( x − η , x + η ) W=(x-\eta, x+\eta) W=(xη,x+η),那么其对应的相对邻域 U U U可能有如下情况:

  • η ≤
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值