漫步数学分析十三——路径连通

第二个重要的主题是连通性,我们直观上知道想应用连通性到哪种集合上,然而,我们的直观在判断更复杂的集合时可能会失效,例如如果 R2 中的集合为 {(x,sin1/x)|x>0}{(0,y)|y[1,1]} ,那么它是连通的吗?如图 ??? 所示,现在我们想用严格的定义来形式化这个概念。


这里写图片描述
图1

事实上,有两个不同但彼此相互联系的连通概念,其中更加直观且实用的是路径连通(path-connectedness),所以我们先从它入手,首先我们需要定义连接两点的曲线是什么。

2 连接 Rn 中两点 x,y 的连续路径是一个映射: φ:[a,b]Rn ,它满足 φ(a)=x,φ(b)=y φ 是连续的,这里 x,y 可能相等,也可能不相等 ba ,在随后的文章中我们会详细的研究连续映射,但是目前,如果对于 [a,b] 中收敛到某个值 t[a,b] 的每个序列 tk ,满足

(tkt)(φ(tk)φ(t))

那么我们就说 φ 是连续的。(直观上来看,连续路径就是该路径上没有断点或跳跃点)如果对于所有的 t[a,b] φ(t)A ,那么我们说路径 φ 位于集合 A 中,如图???所示。

如果集合 A 中的任意两点被一条位于A中的连续路径连接起来,那么我们就成集合 A 是路径连续的(path-connected)。

例如,图???中的区域 A 是路径连通的,另一个路径连通集是区间[0,1]本身。为了证明这个结论,令 x,y[0,1] 并且定义 φ:[0,1]R,φ(t)=(yx)t+x ,这是连接 x,y 的路径,它位于 A=[0,1] 中。

利用上面路径连通的定义,有一个事实是图 ??? 中的集合不是路径连通的,虽然这个事实得证明比较繁琐。许多时候判断集合是否是路径连通的非常容易,只需要看任何两点是否可以由位于集合中的曲线连接起来,并且几何直观也很明显。连通的第二个概念不太好直接判断,但是非常有用我们会在下一篇文章中给出。


这里写图片描述
图2

1 下面那些集合是路径连通的?

(a) [0,3]
(b) [1,2][3,4]
(c) {(x,y)R2|0<x1}
(d) {(x,y)R2|0<x2+y21}

只有(b)不是路径连通的,从图 ??? 可以很明显的看出来。

2 路径连通必须是闭的吗?或者开的?

不需要。[0,1],(0,1),[0,1)都是路径连通的。

3 φ:[0,1]R3 是一个连续路径,并且 =φ([0,1]) ,说明 是路径连续的。

这在直观上很明显,因为我们可以用 φ 本身取连接 中的任意两点。更准确的说,如果 x=φ(a),y=φ(b) ,其中 0ab1 ,令 c:[a,b]R3,c(t)=φ(t) ,那么 c 是连接x,y的路径且位于 中。


这里写图片描述
图3

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值