Holder不等式 Minkowski不等式

著名柯西-施瓦茨不等式是证明二范数三角不等式的重要工具。Holder不等式是柯西不等式的推广,它是证明 p p p范数三角不等式的重要工具。

定义 R n \mathbb{R}^n Rn空间上的 p p p范数 ∣ ⋅ ∣ p |\cdot|_p p定义为
∣ x ∣ p = ( ∑ i = 1 n ∣ x i ∣ p ) 1 / p 。 |x|_p=(\sum_{i=1}^n |x_i|^p)^{1/p}。 xp=(i=1nxip)1/p
这里的 p ≥ 1 p\geq 1 p1是正实数, x = ( x 1 , x 2 , . . . , x n ) ∈ R n x=(x_1,x_2,...,x_n)\in\mathbb{R}^n x=(x1,x2,...,xn)Rn。特别地,对于 p = ∞ p=\infty p=定义
∣ x ∣ ∞ = max ⁡ 1 ≤ i ≤ n ∣ x i ∣ 。 |x|_{\infty}=\max_{1\leq i \leq n} |x_i|。 x=1inmaxxi

p = 2 p=2 p=2时, ∣ ⋅ ∣ 2 |\cdot|_2 2就是我们的二范数。

为了证明 p p p范数是一个范数,我们需要验证其是否满足三角不等式,也即是否有
∣ x + y ∣ p ≤ ∣ x ∣ p + ∣ y ∣ p |x+y|_p\leq |x|_p + |y|_p x+ypxp+yp
对所有的 x , y ∈ R n x,y\in\mathbb{R}^n x,yRn成立。为了证明这个定理,我们需要Holder不等式。

首先需要一个引理。

引理 a λ b 1 − λ ≤ λ a + ( 1 − λ ) b a^{\lambda}b^{1-\lambda}\leq \lambda a + (1-\lambda)b aλb1λλa+(1λ)b这里的 a , b ≥ 0 , 0 ≤ λ ≤ 1 a,b\geq 0, 0\leq \lambda \leq 1 a,b0,0λ1

证明 a a a b b b为0时显然成立,故只需证 a , b > 0 a,b>0 a,b>0的情况。由于 f ( x ) = ln ⁡ x f(x)=\ln x f(x)=lnx是关于 x x x的上凸函数,故对于任意的 a , b > 0 , 0 ≤ λ ≤ 1 a,b> 0, 0\leq \lambda \leq 1 a,b>0,0λ1
f ( λ a + ( 1 − λ ) b ) ≥ λ f ( a ) + ( 1 − λ ) f ( b ) , f(\lambda a + (1-\lambda)b)\geq \lambda f(a) + (1-\lambda)f(b), f(λa+(1

  • 11
    点赞
  • 50
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值