微积分的计算过程中用矩形的面积去近似代替曲边梯形的面积,为什么最终求得的是真实值,而不是近似值?

本文探讨了定积分计算过程中,为何使用定积分得出的函数图像与轴围成的面积是真实值而非近似值。作者通过特殊例子,证明了在分割区间后,曲边三角形的面积相对于其下方小矩形面积是高阶无穷小,从而确保了求和结果的准确性。
摘要由CSDN通过智能技术生成

   一. 问题背景

        我们都知道定积分的计算过程分成四个步骤:

                (1) 分割;

                (2) 近似代替;

                (3) 求和;

                (4) 取极限;

        既然在整个过程中包含了近似计算,那么为什么用定积分求出的函数图像与x轴围成的面积是真实值而不是近似值?

        很多的回答是这样的:因为做分割的时候,固定区间内的函数图像与x轴围成的区域被分割成无数多个小区间,即n\rightarrow \infty,每个小曲边梯形的宽度\lambda\rightarrow 0

        这样的回答不能说它是错的,但是,回答了问题,又好像没有回答。数学是讲严谨的科学,因此,这样的回答相当于没有回答。

        我想从一个狭小的侧面(特例)来抛砖引玉的分享一点我曾经对这个问题的思考。

二. 问题解答

        第一步:推导

图 1

        如图1所示,假设函数 f(x) 在区间 [a, b] 上与x轴围成的面积大小为A,根据定积分的4个求解步骤去计算A,为了解决我们的疑惑,在这里我们修改一下定积分计算过程,将其中的第(2)步的近似代替,即使用小矩形的面积去近似代替小曲边梯形的面积,改变成直接使用小曲边梯形的面积,当然,这个曲边梯形的面积我们无法直接计算;但是,这个曲边梯形的面积等于一个矩形的面积加上一个曲边三角形的面积,矩形的面积我们知道就是定积分求解过程步骤(2)中,近似替代使用的,此时,曲边矩形上方的曲边三角形的面积我们仍然不知道,但不要紧,我们可以暂时用一个字母符号表示它的面积大小。

        因此,对分割后得到的小曲边梯形面积求和,有:

A = \sum_{i=1}^{n}f(\xi _{i})\triangle x_{i} + \sum_{i=1}^{n}\triangle S_{i}

(注意这里没有近似,是完全相等)

        然后,我们取极限,让 n\rightarrow +\infty,可得:

A = \lim_{n\rightarrow \infty } [ \sum_{i=1}^{n}f(\xi _{i})\triangle x_{i} ] + \lim_{n \rightarrow \infty }[ \sum_{i=1}^{n}\triangle S_{i} ]

A = \int_{a}^{b}f(x)dx + \lim_{n \rightarrow \infty }[ \sum_{i=1}^{n}\triangle S_{i} ]

        到这里,其实我们已经预感到了,为了解决我们的疑惑,我们要做的其实就是证明上式右边中的第二项的结果是0,即,小曲边三角形的面积求和,并取极限之后所得的结果为0。

        第二步:证明

        为了证明,小曲边三角形的面积求和,并取极限之后所得的结果为0。我们要先证明一个引理(我们先恬不知耻的叫他鸡贼引理好了)。

        引理:

        若 n\rightarrow +\infty 时,\lim_{n\rightarrow \infty }( \alpha_{1} + \alpha_{2} + \alpha_{3} +... + \alpha_{n}) = A,其中,\alpha_{1}\rightarrow 0^{},\alpha_{2}\rightarrow 0^{},...,\alpha_{n}\rightarrow 0^{},且 A为常数。任意的 \alpha _{i} 都是 n 的函数,即,\alpha _{i} = f_{i}(n)(i=1,2,3,...,n)

如果同时又有,\beta_{1} \to 0^{},\beta_{2} \to 0^{},\beta_{3} \to 0^{},...,\beta_{n} \to 0^{};任意的 \beta _{i} 都是 n 的函数,即,\beta _{i} = g_{i}(n)(i=1,2,3,...,n);且\beta _{1} = O(\alpha _{1}), \beta _{2} = O(\alpha _{2}), ...,\beta _{n} = O(\alpha _{n})    ( O 代表高阶无穷小),则,\lim_{n\rightarrow \infty }(\beta _{1} + \beta _{2} + \beta _{3} +...+ \beta _{n}) = 0

        引理证明 使用极限存在准则Ⅰ(迫敛性):

        因为 \beta_{i} 是 \alpha_{i} 的高阶无穷小,因此有,

        \lim_{n\rightarrow \infty }\frac{\beta _{i}}{\alpha _{i}}=0\, \, \, \, \,\, \, \Rightarrow \frac{\beta _{i}}{\alpha _{i}}=0+\gamma _{i}\, \, \, \, \, \, \, \Rightarrow \beta _{i}=\alpha _{i}\cdot \gamma _{i}\, \, \, \, \, (\, \gamma _{i}\rightarrow 0^{}\, )

        令 max(\gamma _{i}) = \gamma _{max} \rightarrow 0^{}min(\gamma _{i}) = \gamma _{min}\rightarrow 0^{},则,

        \lim_{n\rightarrow \infty }(\beta _{1} + \beta _{2} + \beta _{3} + ... + \beta _{n}) = \lim_{n\rightarrow \infty }(\alpha _{1}\cdot \gamma _{1} + \alpha _{2}\cdot \gamma _{2} +...+ \alpha _{n}\cdot \gamma _{n})\leqslant \lim_{n\rightarrow \infty } (\alpha _{1}\cdot \gamma _{max} + \alpha _{2}\cdot \gamma _{max} +...+ \alpha _{n}\cdot \gamma _{max}) = \lim_{n\rightarrow \infty }(\alpha _{1}+ \alpha _{2} +...+ \alpha _{n})\cdot \gamma _{max} = \lim_{n\rightarrow \infty }A\cdot \gamma _{max} = 0

        

        同理可得:

        \lim_{n\rightarrow \infty }(\beta _{1} + \beta _{2} + \beta _{3} + ... + \beta _{n}) = \lim_{n\rightarrow \infty }(\alpha _{1}\cdot \gamma _{1} + \alpha _{2}\cdot \gamma _{2} +...+ \alpha _{n}\cdot \gamma _{n})\geqslant \lim_{n\rightarrow \infty } (\alpha _{1}\cdot \gamma _{mix} + \alpha _{2}\cdot \gamma _{mix} +...+ \alpha _{n}\cdot \gamma _{mix}) = \lim_{n\rightarrow \infty }(\alpha _{1}+ \alpha _{2} +...+ \alpha _{n})\cdot \gamma _{mix} = \lim_{n\rightarrow \infty }A\cdot \gamma _{mix} = 0

        

因此:

0 \leqslant \lim_{n\rightarrow \infty }(\beta _{1} + \beta _{2} + \beta _{3} +...+ \beta _{n}) \leqslant 0

        根据极限存在准则Ⅰ可得:

\lim_{n\rightarrow \infty }(\beta _{1} + \beta _{2} + \beta _{3} +...+ \beta _{n}) = 0

引理证明完成!

        至此,只差最后一步即可大功告成,那就是证明:包含在同一个曲边梯形内的曲边三角形的面积是其下方的小矩形的面积的高阶无穷小(如图1中,绿色区域)。

        如图1所示,当 n \to \infty 时,图中小曲边矩形近似面积为:

\lim_{n \to \infty }\Delta G_{i} = | f(\xi _{i})\cdot \Delta x_{i} |

其中,f(\xi _{i}) 是在小区间 [x_{i},x_{i+1}] 内任意一点处函数f(x)的值,\xi _{i}\, \, \, \epsilon\: \: [x_{i},x_{i+1}],通常取左端点或者右端点(这里我们取左端点,因为,这里我们要求的是包含在小曲边矩形内的小矩形的面积),显然,f(\xi _{i})是一个有限值

       当  \xi _{i} 取左边端点的值时,曲边梯形的面积 \Delta G_{i} 就近似成了小矩形的面积 \Delta H_{i},但是,对于小矩形来说,\Delta H_{i} 是这个小矩形的真实面积,不是近似面积。

       在 n \to \infty 时,图1中小矩形的面积 \Delta H_{i} 为:

\lim_{n \to \infty }\Delta H_{i} = | f(\xi _{i})\cdot \Delta x_{i} |

其中,\xi _{i} 为曲边梯形的左端点

       在 n \to \infty 时,图1中曲边三角形的面积 \Delta S_{i} 为:

\lim_{n\rightarrow \infty }\Delta S_{i}\approx \frac{1}{2} |\Delta x_{i}| \cdot |f(x_{i+1}) - f(x_{i})|

其中,\lim_{n \to \infty } | f(x_{i+1}) - f(x _{i})| \rightarrow 0^{+},因为,\lim_{n \to \infty }\Delta x_{i} = x_{i+1} - x_{i} \rightarrow 0^{+}

        毫无疑问,曲边三角形的面积小于以曲边三角形的底为底,曲边三角形的高为高的矩形的面积,该曲边三角形被包含在该矩形之内,因此:

\lim_{n \to \infty }\Delta S_{i}< |\Delta x_{i}| \cdot |f(x_{i+1}) - f(x_{i})|

        对曲边三角形的面积和其下方的小矩形的面积求比值,得:

\lim_{n\rightarrow \infty }\frac{\Delta S_{i}}{\Delta H_{i}} < \frac{ |\Delta x_{i}| \cdot |f(x_{i+1}) - f(x_{i})| } {|f(\xi _{i})\cdot \Delta x_{i} | } = \frac{|f(x_{i+1}) - f(x_{i})|} { |f(\xi _{i}) | } \rightarrow 0^{+}

        因此,当 n \to \infty 时,

\Delta S_{i} = O(\Delta H_{i})

        至此,已经证明了:n \to \infty时,在同一个曲边梯形内,小曲边三角形的面积是其下方小矩形面积的高阶无穷小。因此,整个过程证明完成。

  • 10
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值