一. 简介
旋转磁场作为电机能够转动的核心概念,在电机学中非常重要。这一设想由天才物理学家尼古拉·特斯拉(Nikola Tesla)构想出来,这不是发现,而是发明。先设定了产生旋转磁场的目标,然后,通过电学手段,用对称交流电通入相应的对称绕组中产生出来。
空间上任意相对称绕组,通入任意相对称交流电流即可产生一个旋转磁场。
二. 谈旋转
要想弄清旋转磁场,先要弄清旋转。
(1)二维平面中的旋转
在二维平面坐标系中,平面图像的旋转有两种:
a) 一个平面图形绕该图像外一点旋转;
b) 一个平面图形绕该图形内一点旋转。
(2)三维空间中的旋转
在三维空间中一个三维物体的旋转同样有两种:
a) 三维物体绕不穿过该物体的一个轴旋转,就像地球绕着太阳公转;
b) 三维物体绕穿过该物体的一个轴旋转,就像地球绕着地轴自转。
三. 构造旋转磁场
3.1 一个点内部的旋转磁场
(1)平面中一个点内的一个旋转磁场如何描述?
给定二维平面上的一个点(例如,点),在该点上有一个旋转的磁场。在二维平面坐标系中任意选择一个点
,该点在任意时刻
磁感应强度为
,即
,在该点上有一个大小固定的旋转磁场,意味着,随着时间的推移,该点上的磁感应强度
的幅值大小保持不变,
的方向绕着该点旋转,如图1所示。
图1. 一个点上的旋转磁场
在坐标原点 上有一个大小为
,绕着
逆时针旋转的旋转磁场,磁场的旋转角速度为
(假设磁感应强度
绕着该点旋转一周的时间为
)。
(2)构造一个点内的绕着该点本身在一个平面上的旋转磁场
图2. 一个点内部的旋转磁场
如图2所示,三个相同的电感线圈ABC在空间中互成120°放置,在三个线圈中通入三相对称交流电,那么,在点上就会产生一个图1中所示的幅值相等方向旋转的旋转磁场。
3.2平面内一点绕另一点旋转的磁场
(1)一个二维平面内的旋转磁场示例
图3. 一个绕着平面内一点旋转的点磁场
如图3所示,在点上有一个点磁场,
点与
点的距离为
,即
。在
时,
点上的磁场方向为沿着
轴正方向,磁场大小为
,平面上其余点上的磁感应强度为0,随后,随着时间的推移
点绕着
点逆时针旋转,旋转角速度为
,同时,除了
点外,其余点上的磁感应强度仍然保持为 0,这样就构造了一个平面内的一个绕着其他点旋转的点上的旋转磁场。
现在沿着 点的圆形运动轨迹看,在该轨道上,任一时刻,只有一个点上磁感应强度大小为
(方向为沿着圆形轨道的径向,指向圆外),其余点上的磁感应强度为0。
在任意时刻 沿着
点轨迹的圆周,把圆周上各个点上的磁感应强度记录在笛卡尔坐标系中,坐标系的横轴
是圆周上的一点沿着逆时针方向与
点构成的圆弧的距离,坐标系的纵轴是该点的磁感应强度的大小,如图4所示。
图4. 平面中一个点绕原点旋转的磁场沿圆周的磁感应强度分布
3.3 二维平面上的旋转磁场
图5. 二维平面内的线形旋转磁场
如图5所示,在 时刻,
轴正半轴上有一条直线形的磁场,并且,越靠近原点
的点上的磁感应强度越大,越远离
的点上的磁感应强度越小,所有点的磁场方向都是沿着
轴正方向,平面内其余点上的磁感应强度为0。
随着时间的推移 轴正半轴上的线形磁场绕着原点
,以角速度
旋转,于是便得到了一个二维平面上绕着一个点旋转的一个线形旋转磁场。同样,可以如同 3.2 中一样,在任一时刻,在各个点旋转的圆周轨迹上,将各点的磁感应强度与圆上的点到圆与
轴正半轴的交点所形成的弧长之间构造一个函数关系,将其放到笛卡尔坐标系上,得到磁场大小沿着圆周的分布情况。
3.4 三维空间中的旋转磁场
假设在 时,三维空间中有一个固定的磁场,该磁场中每一个点上的磁感应强度
都保持不变(幅值固定,方向不变化)。随后,随着时间推移,在该磁场中以一条直线作为旋转轴,让整个磁场绕着该轴以角速度
旋转,即可得到一个空间中的旋转磁场,实际上是每个点上的磁感应强度矢量
,绕着这个轴做旋转运动(
的幅值保持不变,放向不断变化),该点旋转轨迹所在的平面与旋转轴直线垂直。
四. 电机内的旋转磁场
电机内的旋转磁场这里主要考察的是,电机定子与转子之间的气隙内的由三相对称绕组通入三相对称交流电产生的定子旋转磁场。可以这样假设:把电机的转子拆除,只保留电机的定子,通入三相对称交流电之后定子圆环内部气隙中的磁场(即,基波磁场)。
在任一固定时刻,沿着气隙圆周,电机内磁场的分布为正余弦分布,即,如下图6所示(一个示例,假设气隙圆周的圆半径为 )。其中
轴是在气隙圆周上选择一个固定点作为起点,然后沿着逆时针方向移动得到另一点,两点之间弧长的距离就是横坐标的值,纵坐标
是该点的磁感应强度
的大小。
随之时间 的推移,该正余弦分布分磁场以一个角速度
绕着电机的转轴旋转(旋转对称轴,即,定子圆环的旋转对称轴)。
图6. 气隙圆周上的磁场分布(一对磁极)
假设拆除了电机转子,那么,沿着与电机定子绕组同心圆的圆周上电机磁场呈现正余弦分布,磁感应强度的方向为沿着径向。
五. 旋转磁场类比理解
假设有一个密度不均匀的形状不规则石块,石块上的每一点密度均不相同,在石块中打一个孔,将一根细铁棒从孔中穿过,固定细铁棒在空间中的位置,然后,让石块绕着铁棒旋转,则产生的是一个旋转的密度场。
如果石块的形状为圆柱形,转轴是圆柱的对称轴,再给石块上的每一个点的密度值附加上一个方向,方向可以人为指定,则旋转的石块产生的将是旋转的有向密度场,并且,如果将各个点上的方向指定的和电机中磁场的方向类似,将各个点的密度值指定的和旋转磁场的磁场强度大小类似,则,旋转的有向密度场就与电机的旋转磁场类似。