【Spark】SparkShell的运行

本文介绍SparkShell的基本使用方法及如何通过它访问HDFS上的文件。包括启动SparkShell、使用内置的SparkContext对象sc进行基本的数据处理操作,如读取文件、单词计数等,并详细解释了不同方式访问HDFS的具体步骤。


简介:spark-shell是Spark自带的交互式Shell程序,方便用户进行交互式编程,用户可以在该命令行下用scala编写spark程序。

spark shell的流程

  • 启动 Spark shell

  • 进入Spark 安装目录后执行 spark-shell --master master 就可以提交Spark 任务

  • Spark shell 的原理是把每一行 Scala 代码编译成类, 最终交由 Spark 执行
    Master的地址可以有如下几种设置方式

在这里插入图片描述


具体操作

  1. 在虚拟机中创建文件/export/data/wordcount.txt
    在这里插入图片描述
  2. 启动Spark shell
    在这里插入图片描述
  3. 执行如下代码
### 如何使用 spark-shell 运行 Scala 代码 `spark-shell` 是 Apache Spark 提供的一个交互式 Scala Shell,用于快速测试和运行 Scala 代码[^1]。它允许用户在无需编译的情况下直接执行 Scala 脚本或命令。以下是关于如何使用 `spark-shell` 运行 Scala 代码的详细说明。 #### 启动 spark-shell 启动 `spark-shell` 的基本命令如下: ```bash spark-shell --master local[N] ``` 其中 `local[N]` 表示本地模式,并指定使用 N 个线程来模拟集群环境。如果未指定 `[N]`,默认值为 1[^1]。 #### 在 spark-shell运行 Scala 代码 启动后,用户可以直接在 `spark-shell` 提示符下输入 Scala 代码并立即查看结果。例如: ```scala val textFile = sc.textFile("hdfs://path/to/file") val wordCount = textFile.flatMap(line => line.split(" ")).map(word => (word, 1)).reduceByKey(_ + _) wordCount.collect().foreach(println) ``` 上述代码从 HDFS 中读取文件,对每个单词进行计数,并打印结果[^1]。 #### 加载外部 Scala 文件 如果需要运行保存在文件中的 Scala 代码,可以使用 `:load` 命令加载文件。例如: ```bash :load /path/to/your/scala/file.scala ``` 这将执行文件中的所有代码[^2]。 #### 检查使用的 Scala 版本 不同的 Spark 版本支持不同的 Scala 版本。例如,Spark 3.3.2 使用的是 Scala 2.12.15,而 Spark 3.1.3 使用的是 Scala 2.12.10[^3]。可以通过以下命令检查当前 `spark-shell` 使用的 Scala 版本: ```scala scala.util.Properties.versionString ``` #### 示例代码 以下是一个简单的 Scala 程序,演示如何在 `spark-shell` 中计算包含特定字符的行数: ```scala val logFile = "file:///usr/local/spark-2.1.0/README.md" val sc = new org.apache.spark.SparkContext(new org.apache.spark.SparkConf().setAppName("Simple Application").setMaster("local")) val logData = sc.textFile(logFile, 2).cache() val numAs = logData.filter(line => line.contains("a")).count() val numBs = logData.filter(line => line.contains("b")).count() println(s"Lines with a: $numAs, Lines with b: $numBs") ``` 此代码片段读取本地文件,统计包含字符 `a` 和 `b` 的行数,并输出结果[^2]。 ### 注意事项 - 确保 Spark 环境已正确配置,包括 Hadoop 和其他依赖项。 - 如果需要访问 HDFS 文件,请确保 HDFS 集群可用,并提供正确的 URI。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值