Mask R-CNN训练自己的数据集

数据集制作

通常使用labelme来制作实例分割数据集,也有教程和代码来转换成COCO数据集。labelme项目地址为:https://github.com/wkentaro/labelme/tree/main

安装labelme

conda create --name=labelme python=3
conda activate labelme
pip install labelme

# or install standalone executable/app from:
# https://github.com/wkentaro/labelme/releases

标注分割区域

在labelme标注区域时,对于存在遮挡的物体,可以利用labelme标签里的group选项。如下图所示,elephant有两部分区域,group都设置为0.
image.png

转换为COCO数据集

在labelme项目下的examples/instance_segmentation文件夹中提供转VOC和COCO两种格式的数据和脚本。本文只对转COCO格式进行描述,文件结构如下所示。
image.png
图像和标签文件
数据集的类别
对于自定义数据集,按照以上的结果准备好图像数据和标签数据,即data_annotated文件夹中的内容。运行如下代码,转换为COCO格式的数据集。

python labelme2coco.py data_annotated/ coco --labels labels.txt

完成之后,会在输出文件夹下得到如下的内容。
转换后的COCO数据
一个小的点,在保存json文件时,可以将代码修改成如下,得到的json文件看起来比较美观,同时支持中文

with open(out_ann_file, "w") as f:
    json.dump(data, f, indent=2, ensure_ascii=False))
    #ensure_ascii=False可以消除json包含中文的乱码问题

Mask R-CNN训练

本文的环境配置如下:

  • pytorch==1.7.0
  • torchvision==0.8.0
  • mmcv-full==1.2.7
  • mmdet==2.8.0

config文件修改

model config

model的配置部分,唯一需要修改的是num_classes参数,根据数据集修改对应值。

# model settings

num_classes=1

model = dict(
    type='MaskRCNN',
    pretrained='torchvision://resnet50',
    backbone=dict(
        type='ResNet',
        depth=50,
        num_stages=4,
        out_indices=(0, 1, 2, 3),
        frozen_stages=1,
        norm_cfg=dict(type='BN', requires_grad=True),
        norm_eval=True,
        style='pytorch'),
    neck=dict(
        type='FPN',
        in_channels=[256, 512, 1024, 2048],
        out_channels=256,
        num_outs=5),
    rpn_head=dict(
        type='RPNHead',
        in_channels=256,
        feat_channels=256,
        anchor_generator=dict(
            type='AnchorGenerator',
            scales=[8],
            ratios=[0.5, 1.0, 2.0],
            strides=[4, 8, 16, 32, 64]),
        bbox_coder=dict(
            type='DeltaXYWHBBoxCoder',
            target_means=[.0, .0, .0, .0],
            target_stds=[1.0, 1.0, 1.0, 1.0]),
        loss_cls=dict(
            type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
        loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
    roi_head=dict(
        type='StandardRoIHead',
        bbox_roi_extractor=dict(
            type='SingleRoIExtractor',
            roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
            out_channels=256,
            featmap_strides=[4, 8, 16, 32]),
        bbox_head=dict(
            type='Shared2FCBBoxHead',
            in_channels=256,
            fc_out_channels=1024,
            roi_feat_size=7,
            num_classes=num_classes,
            bbox_coder=dict(
                type='DeltaXYWHBBoxCoder',
                target_means=[0., 0., 0., 0.],
                target_stds=[0.1, 0.1, 0.2, 0.2]),
            reg_class_agnostic=False,
            loss_cls=dict(
                type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
            loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
        mask_roi_extractor=dict(
            type='SingleRoIExtractor',
            roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0),
            out_channels=256,
            featmap_strides=[4, 8, 16, 32]),
        mask_head=dict(
            type='FCNMaskHead',
            num_convs=4,
            in_channels=256,
            conv_out_channels=256,
            num_classes=num_classes,
            loss_mask=dict(
                type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))))
# model training and testing settings
train_cfg = dict(
    rpn=dict(
        assigner=dict(
            type='MaxIoUAssigner',
            pos_iou_thr=0.7,
            neg_iou_thr=0.3,
            min_pos_iou=0.3,
            match_low_quality=True,
            ignore_iof_thr=-1),
        sampler=dict(
            type='RandomSampler',
            num=256,
            pos_fraction=0.5,
            neg_pos_ub=-1,
            add_gt_as_proposals=False),
        allowed_border=-1,
        pos_weight=-1,
        debug=False),
    rpn_proposal=dict(
        nms_across_levels=False,
        nms_pre=2000,
        nms_post=1000,
        max_num=1000,
        nms_thr=0.7,
        min_bbox_size=0),
    rcnn=dict(
        assigner=dict(
            type='MaxIoUAssigner',
            pos_iou_thr=0.5,
            neg_iou_thr=0.5,
            min_pos_iou=0.5,
            match_low_quality=True,
            ignore_iof_thr=-1),
        sampler=dict(
            type='RandomSampler',
            num=512,
            pos_fraction=0.25,
            neg_pos_ub=-1,
            add_gt_as_proposals=True),
        mask_size=28,
        pos_weight=-1,
        debug=False))
test_cfg = dict(
    rpn=dict(
        nms_across_levels=False,
        nms_pre=1000,
        nms_post=1000,
        max_num=1000,
        nms_thr=0.7,
        min_bbox_size=0),
    rcnn=dict(
        score_thr=0.05,
        nms=dict(type='nms', iou_threshold=0.5),
        max_per_img=100,
        mask_thr_binary=0.5))

data config

data的配置部分,需要修改data_rootclasses参数来指明数据集的路径,以及对应的类别名列表。对于训练集、验证集和测试集的ann_fileimg_prefix两个参数需要进行调整。

dataset_type = 'CocoDataset'

img_norm_cfg = dict(
    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)

train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
    dict(type='Resize', img_scale=(416, 416), keep_ratio=True),
    dict(type='RandomFlip', flip_ratio=0.5),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='Pad', size_divisor=32),
    dict(type='DefaultFormatBundle'),
    dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
]
test_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(
        type='MultiScaleFlipAug',
        img_scale=(416, 416),
        flip=False,
        transforms=[
            dict(type='Resize', keep_ratio=True),
            dict(type='RandomFlip'),
            dict(type='Normalize', **img_norm_cfg),
            dict(type='Pad', size_divisor=32),
            dict(type='ImageToTensor', keys=['img']),
            dict(type='Collect', keys=['img']),
        ])
]

data_root = 'datasets/xuzhou2_single_jietou/'
classes=["jietou"]
data = dict(
    samples_per_gpu=32,
    workers_per_gpu=1,
    # dataset type
    train=dict(
        type=dataset_type,
        ann_file=data_root + 'annotations/instances_jietou_train20231016.json',
        img_prefix=data_root + 'train/',
        pipeline=train_pipeline,
        classes=classes
        ),
    val=dict(
        type=dataset_type,
        ann_file=data_root + 'annotations/instances_jietou_val20231016.json',
        img_prefix=data_root + 'val/',
        pipeline=test_pipeline,
        classes=classes
        ),
    test=dict(
        type=dataset_type,
        ann_file=data_root + 'annotations/instances_jietou_val20231016.json',
        img_prefix=data_root + 'val/',
        pipeline=test_pipeline,
        classes=classes
        ),
    )
evaluation = dict(
                    interval=10,   
                    metric=['bbox', 'segm']
                    )

优化器和学习率的配置

使用随机梯度下降法来更新参数,修改学习率的优化策略为warmup+余弦衰减策略。

# optimizer
optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=None)

# Learning rate scheduler config used to register LrUpdater hook
lr_config = dict(
    policy='CosineAnnealing', 
    min_lr=0,
    warmup='linear',
    warmup_iters=25,
    warmup_ratio=0.001,
    warmup_by_epoch=True
)
total_epochs = 150

runtime配置

修改权重保存间隔为5个epoch保存一次。

checkpoint_config = dict(interval=5)
# yapf:disable
log_config = dict(
    interval=1,
    hooks=[
        dict(type='TextLoggerHook'),
        # dict(type='TensorboardLoggerHook')
    ])
# yapf:enable
dist_params = dict(backend='nccl')
log_level = 'INFO'
load_from = None
resume_from = None
workflow = [('train', 1)]

训练

通过运行如下命令,即可开启Mask R-CNN的训练。

CUDA_VISIBLE_DEVICES=4,5,6,7 \
bash tools/dist_train.sh configs/aaaa/mask_rcnn_r50_fpn_custom.py 4

测试

通过运行test.py文件,来开启单GPU的测试,命令如下。

python tools/test.py /path/to/config_file /path/to/checkpoint_file --eval bbox segm

常见问题

Q1:oserror: [errno 39] directory not empty "eval_hook"

通过注释mmdet/core/evaluation/eval_hooks.py文件中的tmpdir内容,具体操作是将multi_gpu_test函数中的tmpdir设置为None。

results = multi_gpu_test(
    runner.model,
    self.dataloader,
    # tmpdir=tmpdir,
    tmpdir=None,
    gpu_collect=self.gpu_collect)

参考链接

【实例分割(一)】Detectron2 数据集制作并注册数据集训练 - 古月居
【实例分割(二)】Mask2Former 数据集制作和训练 - 古月居
【深度学习】YOLOv5实例分割 数据集制作、模型训练以及TensorRT部署
利用labelme制作实例分割数据集_labelme实例分割_Jiazhou_garland的博客-CSDN博客

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 要训练自己的数据集,我们首先需要下载Mask R-CNN模型的代码和预训练的权重。我们可以从GitHub上的Mask R-CNN项目中获得代码。将代码克隆到本地后,我们可以安装所需的依赖库。 接下来,我们需要准备我们自己的数据集。数据集应包含图像和相应的实例分割标注。标注可以是标记每个实例的掩码或边界框。确保标注与图像具有相同的文件名,并将它们保存在单独的文件夹中。 一旦准备好数据集,我们需要将它们进行预处理,以便能够与Mask R-CNN模型兼容。为此,我们可以编写一个数据加载器,该加载器将图像和标注转换为模型可以处理的格式。 在准备好数据集和数据加载器后,我们可以开始训练模型。通过运行训练脚本,我们可以指定训练数据集的路径、模型的配置以及需要的其他参数。模型将针对给定的数据集进行迭代,逐步学习实例分割任务。 训练过程可能需要一定时间,具体取决于数据集的大小和复杂性。我们可以利用GPU加速来加快训练速度。 一旦训练完成,我们可以使用自己的数据集进行图像实例分割。导入训练好的模型权重,我们可以提供测试图像并获得模型对实例的分割结果。 总之,训练自己的数据集以进行图像实例分割需要下载Mask R-CNN代码和预训练权重。然后,准备和预处理数据集,并编写数据加载器。使用训练脚本进行模型训练,并在训练完成后使用自己的数据集进行图像实例分割。 ### 回答2: 要训练自己的数据集,首先需要下载并设置合适的数据集。可以从各种资源中寻找与自己目标相关的图像数据集,并确保数据集中包含正确的标注信息,例如每个图像的实例分割掩模。 接下来,我们需要安装并配置Mask R-CNN的开发环境。可以通过使用Python包管理工具pip来安装所需依赖,并下载Mask R-CNN代码库。然后,根据具体的数据集,需要进行一些配置调整,例如修改配置文件中相关的参数设置,如类别数目、训练和验证数据集的路径等等。 接下来,将数据集准备成模型可接受的格式。一般来说,我们需要将数据集划分为训练集和验证集,并提供每个图像的标注信息。可以使用一些处理工具来将数据集进行预处理,将图像转换为模型可接受的格式,并将标注信息保存为对应的掩模图像。 接下来,我们可以开始训练模型了。通过运行相应的训练脚本,可以开始构建并训练Mask R-CNN模型。训练过程会根据指定的配置和数据集进行迭代更新,直到模型收敛或达到预设的迭代次数。可以根据具体的训练状态和需求来监控训练过程,并根据需要进行调整和优化。 最后,一旦训练完成,我们可以使用训练好的模型对新的图像进行实例分割。可以通过加载训练好的权重文件来恢复模型,并使用模型对输入图像进行预测和推断,得到每个实例的分割结果。可以将结果保存为掩模图像或直接可视化展示。 在整个训练过程中,需要注意数据集的质量,合理调整模型的参数和配置,并进行适当的训练和验证策略,以获得更好的实例分割效果。 ### 回答3: Mask R-CNN 是一种用于图像实例分割的深度学习模型,它结合了目标检测和语义分割的特点。在实际应用中,我们需要将模型训练在自己的数据集上,以便能够准确地对我们感兴趣的目标进行实例分割。 首先,我们需要准备自己的数据集。这包括收集具有实例标注的图像,并将它们分成训练集和验证集。实例标注是指为每个图像中的目标对象绘制边界框和遮罩,以指示目标的位置和形状。 接下来,我们需要下载并配置Mask R-CNN的代码库。这可以通过在GitHub上找到Mask R-CNN的实现并进行下载。下载完成后,我们需要根据自己的数据集修改代码中的配置文件,以适应我们的数据集和实验需求。 然后,我们可以开始训练自己的数据集。通过运行训练脚本,并指定数据集路径、模型配置和训练参数,我们可以开始训练模型。训练过程需要一定的时间和计算资源,具体时间取决于数据集的规模和硬件条件。 在训练过程中,模型会逐渐学习到目标的外观和形状特征,并生成准确的边界框和遮罩。可以通过查看训练过程中的损失值和验证指标来监控模型的训练情况,并根据需要进行调整和优化。 最后,当模型训练完成后,我们可以使用它对新的图像进行实例分割。通过加载训练好的权重,并用模型进行预测,我们可以得到每个目标对象的边界框和遮罩。这些结果可以进一步用于目标跟踪、图像分析等应用。 综上所述,训练自己的数据集可以帮助我们将Mask R-CNN模型应用到我们关心的领域,并进行准确的图像实例分割。这需要准备数据集、下载代码库、修改配置文件、进行模型训练和应用预测等步骤。通过这一过程,我们可以获得针对自己数据集的个性化实例分割模型,以满足我们具体的需求。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值