直观理解
编辑
在数学及其相关领域中,一个对象具有
完备性,即它不需要添加任何其他元素,这个对象也可称为
完备的或
完全的。更精确地,可以从多个不同的角度来描述这个定义,同时可以引入
完备化这个概念。但是在不同的领域中,“完备”也有不同的含义,特别是在某些领域中,“完备化”的过程并不称为“完备化”,另有其他的表述,请参考
代数闭域、
紧化(compactification)或
哥德尔不完备定理。
直观上讲,一个空间
完备就是指“没有孔”且“不缺皮”,两者都是某种“不缺点”。没有孔是指内部不缺点,不缺皮是指边界上不缺点。从这一点上讲,一个空间
完备同一个
集合的
闭包是类似的。这一类似还体现在以下定理中:完备空间的闭子集是完备的。
[1]
完备化
编辑定义
对任一度量空间
M,我们可以构造相应的完备度量空间
M'(或者表示为
),使得原度量空间成为新的完备度量空间的稠密子空间。
M'具备以下普适性质:若
N为任一完备度量空间,
f为任一从
M到
N的一致连续函数,则存在唯一的从
M'到
N的一致连续函数
f'使得该函数为
f的扩展。新构造的完备度量空间
M'在
等距同构意义下由该性质所唯一决定,称为
M的
完备化空间。
[2]

以上定义是基于
M是
M'的稠密子空间的概念。我们还可以将
完备化空间定义为包含
M的最小完备度量空间。可以证明,这样定义的完备化空间存在,唯一(在等距同构意义下),且与上述定义等价。
构造
类似于从有理数域出发定义无理数的方法,我们可以通过
柯西序列给原空间添加元素使其完备。



康托法构造实数是该完备化方法的一个特例:实数域是有理数域作为以通常的差的绝对值为距离的度量空间的完备化空间。
性质
相关定理
编辑-
任一 紧致度量空间都是完备的。实际上,一个度量空间是紧致的当且仅当该空间是完备且完全有界的。
-
完备空间的任一子空间是完备的当且仅当它是一个闭子集。
-
若 X为一集合, M是一个完备度量空间,则所有从 X映射到 M的 有界函数 f的集合B( X, M)是一个完备度量空间,其中集合B( X, M)中的距离定义为:

-
若 X为一拓扑空间, M是一个完备度量空间,则所有从 X映射到 M的 连续有界函数 f的集合C b( X, M)是B( X, M)(按上一条目的定义)中的闭子集,因而也是完备的。
例子
编辑
(2)
实数空间是完备的
(3)
开区间(0,1)不是完备的。序列(1/2, 1/3, 1/4, 1/5, ...)是柯西序列但其不收敛于(0, 1)中任何的点。
(4)令
S为任一集合,
S为
S中的所有序列。如下定义
S上任意两个序列(
xn)和(
yn)的距离:如果存在某个最小的N,使
,那么定义距离为1/N;否则(所有的对应项都相等)距离为0。按此方式定义的度量空间是完备的。该空间
同胚于
离散空间
S的可数个副本的
积。

相关概念
编辑
完备与闭:前面讲,完备类似于闭,那么,“完备”与“闭”的区别在何处呢?它们的区别在于,完备是空间或集合的性质,而闭是
子集的性质。通常我们说某个集合是
闭集或
开集,实际上是指该集合是
R或某个拓扑空间的闭子集或开子集。例如,开区间(0, 1)是全集(0, 1)或
的闭子集,因为(0, 1)在这两个全集中的导集是其自身。但(0, 1)是
R的开子集。闭子集可以用收敛序列定义,因为收敛序列的极限点总是在全集中的,极限点在子集中与否决定该子集是否为闭子集。与此相对,完备性的定义中没有全集的概念,这也是为什么在其定义中必须用柯西序列而不能用收敛序列,因为在收敛序列的定义中必有极限点,若该极限点不在度量空间中,则收敛序列中的点到该极限点距离是未定义的。

拓扑完备空间
编辑
注意完备性是度量的属性,而不是拓扑的属性,这意味着完整的度量空间可以与非完整的度量空间同构。实数由实数给出,它们是完整的,但是与开放间隔(0,1)是同构的,其不完整。
在
拓扑中,考虑到完全符合条件的空格,空间至少存在一个导致给定拓扑的完整度量。完全可容纳的空间可以表征为可以写成一些完整度量空间的数量众多的开放子集的交集的空间。由于Baire类定理的结论纯粹是拓扑的,它也适用于这些空间。
完全可容纳的空间通常称为拓扑完整。然而,后一个术语是有些任意的,因为度量不是可以谈论完整性的拓扑空间中最通用的结构(参见替代和概括部分)。实际上,一些作者使用拓扑完整的术语来形容更广泛的拓扑空间,这是完全可以统一的空间。
与可分离完整度量空间同构的拓扑空间称为
波兰空间。
替代和概括
编辑
由于
柯西序列也可以在一般拓扑组中定义,依赖度量结构来定义完整性和构建空间完成的替代方法是使用组结构。这通常在拓扑向量空间的内容中看到,但是仅需要存在连续的“减法”操作。
也可以通过柯西网或柯西滤波器来取代柯西序列的完整性定义。如果每个柯西网(或等同于每个柯西过滤器)在X中都有一个限制,那么X称为完整的。柯西网适用的最普遍的情况是柯西空间。