泛函分析 01.05 距离空间-完备性

§1.4 

1.4.1Cauchy 

,Cauchy. 
,Cauchy. 
Cauchy,. 
广. 
{x n },, 
. 

1.4.1X=(0,1].{1n }X=(0,1] 
Cauchy,X=(0,1],0 ¯ ¯  X. 
,Cauchy. 
. 
1.4.1X=(0,1]0. 
,{1n }. 
,X 1 =(0,1]{0}Cauchy. 
,:Cauchy. 
,,Cauchy. 

1.4.2(X,d),{x n }  n=1 (X,d). 
ε>0,N,m,nN, 
d(x n ,x m )<ε(1.4.1) 
{x n }Cauchy. 

1.4.3{x n }(X,d)Cauchy, 
{x 1 ,x 2 ,}. 
Cauchy,. 
:Cauchy, 
ε=1,N,n,m>N,d(x n ,x m )<1. 
β=max{d(x 1 ,x 2 ),d(x 1 ,x 3 ),,d(x 1 ,x N+1 )}, 
,n, 
d(x 1 ,x n )<β+1 
:{x 1 ,x 2 ,}B(x 1 ,β+1), 
,. 

1.4.4Cauchy. 
:Cauchy,. 
:lim n x n =x 0 ,ε>0,N,n,m>N, 
d(x n ,x 0 )<ε2 ,d(x m ,x 0 )<ε2  
, 
d(x n ,x m )d(x n ,x 0 )+d(x m ,x 0 )<ε,(n,m>N) 
{x n }Cauchy. 

1.4.2 

Cauchy, 
,Cauchy. 
Cauchy, 
: 

1.4.5(X,d)Cauchy, 
X. 
(). 
,,Cauchy. 

1.4.6Q, 
,. 
:πn{3,3.1,3.14,3.141,3.1415,} 
Cauchy,Q,π. 
:Cauchy,: 
Cauchy, 
,. 
1.4.6,. 

1.4.7. 
XX 1 X,X 1 . 
X 1 .,X 1  
CauchyX 1 . 
{x n }  n=1 X 1 ,Cauchy. 
X,{x n }x,xX. 
X 1 ,X 1 xX 1 X 1 . 

1.4.8. 
:{x n }XCauchy, 
Cauchy. 
,,Cauchy, 
Cauchy. 
{x n }XCauchy, 
Cauchy,ε>0,N,n,m>N, 
d(x n ,x m )<ε 
X,{x n }{x n k  }x 0 X, 
x n k  x 0 (k) 
(x 0 x n X) 
K=N,k>K,n k k>K=N, 
d(x n ,x n k  )<ε(n>N) 
k,d, 
d(x n ,x 0 )ε(n>N), 
x n x 0 ,x 0 X,X, 
,Cauchy{x n },x 0 , 
x n x 0 (n) 

1.4.9X{x n }XCauchy, 
{x n }{x n k  }x 0 ,{x n }x 0 (n) 

1.4.3 

1.4.10R n . 

1.4.11C[a,b]. 
:{x n }  n=1 C[a,b]Cauchy. 
: 
(1)x(t)({x n }); 
(2)x(t)C[a,b]; 
(3)x n (t)x(t)(n)(C[a,b]) 
(i){x n (t)}C[a,b]Cauchy, 
ε>0,N,n,mN, 
d(x n ,x m )<ε 
:max atb |x n (t)x m (t)|<ε 
t[a,b],|x n (t)x m (t)|<ε(n,mN) 
{x n (t)}RCauchy, 
R,x(t),使x n (t)x(t)(n). 
(ii)x(t)C[a,b] 
n,mN, 
|x n (t)x m (t)|<ε,t[a,b](1.4.2) 
t,m, 
|x n (t)x(t)|ε(nN),t[a,b](1.4.3) 
x n (t)x(t),x(t),x(t)C[a,b]. 
(iii)nN 
|x n (t)x(t)|ε,t[a,b], 
max atb |x n (t)x(t)|ε, 
d(x n ,x)ε,(nN),lim n x n =x. 

1.4.12l  . 
:{x n }l  Cauchy, 
x n ={ξ (n) k }  k=1 .: 
(1)x(({x n }); 
(2)xl  ; 
(3)x n x(n)(l  ) 
:{x n }l  Cauchy, 
x n ={ξ (n) k }  k=1 . 
Cauchy,ε>0,N,n,mN, 
d(x n ,x m )<ε 
sup k |ξ (n) k ξ (m) k |<ε 
k,|ξ (n) k ξ (m) k |<ε(n,mN). 
{ξ (n) k }  k=1 RCauchy. 
R,ξ k ,使lim n ξ (n) k =ξ k . 
x={ξ k },xl  x n x(n) 
(l  ). 
n,mN,|ξ (n) k ξ (m) k |<ε,m, 
|ξ (n) k ξ k |ε(nN)(1.4.4) 
(1.4.4),k, 
|ξ k ||ξ (N) k ξ k |+|ξ (N) k |ε+|ξ (N) k | 
x N ={ξ (N) 1 ,ξ (N) 2 ,,ξ (N) k ,}, 
{ξ k },{ξ k }l  ,nN, 
k, 
|ξ (n) k ξ k |ε, 
 
d(x n ,x)=sup k |ξ (n) k ξ k |ε(nN), 
x n x={ξ k }.l  . 

1.4.13C[0,T],P[0,T][0,T]. 
P[0,T]C[0,T],P[0,T]C[0,T]. 
C[0,T],P[0,T]C[0,T]. 
,{1,1+t,1+t+12! t 2 ,1+t+12! t 2 +13! t 3 ,} 
C[0,T]e t (,), 
e t  ¯ ¯  P[0,T],P[0,T]C[0,T]. 
1.4.4, 
{1,1+t,1+t+12! t 2 ,1+t+12! t 2 +13! t 3 ,} 
Cauchy,P[0,T],P[0,T] 
d(p 1 ,p 2 )=max 0tT |p 1 (t)p 2 (t)| 
(p 1 (t),p 2 (t)P[0,T]) 

1.4.14X[0,1],X 
d(x,y)= 1 0 |x(t)y(t)|dt(1.4.5) 
X,. 
Cauchy, 
.{x n (t)}(n>2): 
x n (t)=⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ 0,0t12 1n ,1,12 t1,线,.  
图1.4.1 Cauchy列
{x n }XCauchy, 
d(x n ,x m )= 1 0 |x m (t)x n (t)|dt 
=12 |1n 1m |0(m,n) 
X,Xy(t),使 
d(x n ,y)0,(n) 
 
x(t)=⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ 0,0t<12 ,1,12 <t1,12 ,t=12 .  
 
 1 0 |x(t)y(t)|dt 
 1 0 |x(t)x n (t)|dt+ 1 0 |x n (t)y(t)|dt 
=12 1n +d(x n ,y)0 
 
 1 0 |x(t)y(t)|dt=0 
x(t)y(t), 
x(t)y(t)[0,12 )(12 ,1], 
,. 
[0,12 )y(t)=x(t)=0,(12 ,1]y(t)=x(t)=1, 
y(t)t=12 (),y(t). 
1:x(t){x n }, 
x(t),X. 
2:,X[0,1], 
C[0,1][0,1], 
,X,C[0,1]. 
3.,[a,b] 
 
d(x,y)={ b a |x(t)y(t)| 2 dt} 12  (1.4.6) 
,. 

1.4.4 

, 
. 
,.. 
便,. 
(X,d),(X 0 ,d)(X,d). 
(1)X 0 (X,d),(X 0 ,d). 
(2)X 0 ,X 0  ¯ ¯ ¯ ¯  (X,d), 
X 0 . 
(X 0  ¯ ¯ ¯ ¯  ,d),X 0 (X 0  ¯ ¯ ¯ ¯  ,d). 
(X 0 ,d)(X 0  ¯ ¯ ¯ ¯  ,d),(X 0 ,d) 
,使. 
:Q,:Cauchy 
,. 
R. 
:,QR. 
QR. 
: 
(i)Q(); 
(ii)QR,QR; 
(iii)RQ. 
(X,d),X,使,X 
,X,使. 
XX. 
. 
X,. 

1.4.15(X,d),(X ˜ ,d ˜ ), 
使(X,d)(X ˜ ,d ˜ ),, 
(X ˜ ,d ˜ ).(X ˜ ,d ˜ )(X,d). 
:: 
(1)X ˜ d ˜ . 
(2)(X,d)(X ˜ ,d ˜ ). 
(3)(X ˜ ,d ˜ ),X ˜ . 
(4),. 

(1)(X ˜ ,d ˜ ). 
(i)(X ˜ ) 
(X,d)CauchyX ˜ . 
Cauchyx ˜ ={x n },y ˜ ={y n }, 
lim n d(x n ,y n )=0, 
X ˜ ,x ˜ =y ˜ . 
(ii)() 
x ˜ ={x n },y ˜ ={y n }X ˜  
d ˜ (x ˜ ,y ˜ )=lim n d(x n ,y n )(1.4.7) 
(iii)() 
{x n },{y n }XCauchy, 
ε>0,N,m,n>N, 
d(x n ,x m )<ε2 ,d(y n ,y m )<ε2  
, 
|d(x n ,y n )d(x m ,y m )|d(x n ,y m )+d(y n ,y m )<ε 
{d(x n ,y n )}RCauchy, 
{d(x n ,y n )}.d ˜ (x ˜ ,y ˜ ). 
(iv)d ˜ x ˜ ,y ˜ . 
x ˜ ={x n }={x  n },y ˜ ={y n }={y  n }. 
{x  n },{y  n }XCauchy, 
d(x,y)=lim n d(x n ,y n )=lim n d(x  n ,y  n ) 
, 
|d(x n ,y n )d(x  n ,y  n )|d(x n ,x  n )+d(y n ,y  n )0(n) 
d(x n ,y n )d(x  n ,y  n )0(n), 
lim n d(x n ,y n )=lim n d(x  n ,y  n ) 
X ˜ d ˜ x ˜ ,y ˜ Cauchy. 
d ˜ X ˜ . 
(2)(X,d)(X ˜ ,d ˜ ). 
(i)(,) 
X 0  ˜ X{x}. 
X 0  ˜ X ˜ ,X 0  ˜ X ˜ . 
T:(X,d)(X ˜ ,d ˜ ),xX,Tx=(x,x,). 
(ii)() 
Tx=X ˜ . 
x,yX,x ˜ =(x,x,),y ˜ =(y,y,), 
d ˜ (x ˜ ,y ˜ )=lim n d(x,y)=d(x,y) 
T:XX 0  ˜ . 
(iii)(TX=X 0  ˜ X ˜ ) 
x ˜ ={x n }X ˜ , 
x k  ˜ =(x k ,x k ,,x k ,)(x ˜ ={x n }). 
x k  ˜ X 0  ˜ .x k  ˜ x ˜ (k). 
ε>0,{x n }X ˜ XCauchy, 
N,k,nN,d(x n ,x k )<ε 
 
d ˜ (x ˜ ,x ˜  k )=lim n d(x n ,x k )ε(kN)(1.4.8) 
(X ˜  0 ,d ˜ )(X ˜ ,d ˜ ).TXX ˜ . 
(3)(X ˜ ,d ˜ ). 
(i){x ˜  n }  n=1 X ˜ Cauchy. 
X ˜  0 X ˜ ,x ˜  n , 
y ˜  n ={y n ,y n ,y n ,}X ˜  0 ,使 
d ˜ (x ˜  n ,y ˜  n )<1n (n=1,2,)(1.4.9) 
(ii)y ˜ =(y 1 ,y 2 ,), 
{x ˜  n }X ˜ Cauchy, 
d(y n ,y m )=d(y ˜  n ,y ˜  m ) 
d(y ˜  n ,x ˜  n )+d(x ˜  n ,x ˜  m )+d(x ˜  m ,y ˜  m ) 
<1n +d(x ˜  n ,x ˜  m )+1m 0(n,m) 
y ˜ (X,d)Cauchy,y ˜ X ˜ , 
lim n d ˜ (y ˜  n ,y ˜ )=0 
(iii) 
d ˜ (x ˜  n ,y ˜ )d ˜ (x ˜  n ,y ˜  n )+d ˜ (y ˜  n ,y ˜ )(1.4.10) 
1n +d ˜ (y ˜  n ,y ˜ )0(n)(1.4.11) 
x ˜  n y ˜ ,X ˜ . 
(4)() 
Y ˜ X,Y ˜  
Y ˜  0 X.X ˜  0 Y ˜  0 ,φ. 
x ˜ X ˜ ,x ˜  n X ˜  0 ,使 
x ˜  n x ˜ (n) 
y ˜  n =φ(x ˜  n ),y ˜  n Y ˜ , 
y ˜ Y ˜ ,使 
y ˜  n y ˜ (n) 
x ˜ y ˜ (x ˜ X ˜ ),X ˜ Y ˜ , 
,. 
1() 
,. 
:π,2   Cauchy 
{3,3.1,3.14,3.141,3.1415,}(1.4.12) 
{1,1.4,1.41,1.414,1.4142,}(1.4.13) 
(X ˜ ,d ˜ )Cauchy(X ˜ ) 
: 
d({3,3.1,3.14,3.141,}{1,1.4,1.41,1.414,}) 
 
{31,3.11.4,3.141.41,3.1411.414,} 
π2   . 
{3,3,},{3.1,3.1,},{3.14,3.14,}, 
{1,1,},{1.4,1.4,},{1.41,1.41,}, 
(X ˜  0 ,d ˜ )Cauchy(X ˜  0 ) 
2,X ˜ , 
X ˜ X ˜  0 , 
(X,d). 
XX ˜ ,. 
图1.4.2 等距映射
3, 
Cauchy. 
X,X 1 ,: 
XX 1 , 
XX 1 , 
X 1 X. 
. 
L 2 () 
d(x,y)={ b a |x(t)y(t)| 2 } 12   
. 
4Cauchy. 
,XX ˜ . 
.. 
,使X 
(),X ˜  
.. 

  • 8
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值