多协议 Tracker 系统架构与传感融合实战 第五章 卡尔曼滤波定位算法实战

#王者杯·14天创作挑战营·第1期#

第五章 卡尔曼滤波定位算法实战

摘要
本章围绕 IMU + UWB 传感融合场景,全面讲解卡尔曼滤波(KF)、扩展卡尔曼滤波(EKF)与无迹卡尔曼滤波(UKF)的理论推导、模块化实现、性能对比与实战优化。内容涵盖:

  1. 系统与观测模型构建

  2. 一维/二维 KF 数学与代码

  3. EKF 非线性扩展与 Jacobi 计算

  4. UKF Sigma 点设计与权重分配

  5. 算法流程图(PlantUML)、C 语言实现示例

  6. STM32H7 上资源占用、运行性能、RMSE 对比

  7. 参数调优策略与数值稳定性分析

  8. 自动化可视化与真实轨迹对比


目录

  1. 5.1 本章导读

  2. 5.2 系统与观测模型

    1. 5.2.1 状态与输入定义

    2. 5.2.2 系统转移方程

    3. 5.2.3 观测方程与噪声

  3. 5.3 标准卡尔曼滤波器 (KF)

    1. 5.3.1 算法推导

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

damo王

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值