
双目立体视觉
文章平均质量分 88
双目立体视觉
落叶随峰
菜鸡大学生一枚,感兴趣方向:C++,嵌入式,PCB设计,中间件,后端,视频语义分割等。
展开
-
Stereo-Detection:YOLO v5与双目测距结合,实现目标的识别和定位测距
Stereo-Detection 是一个传统的SGBM深度测距+yolov5目标检测,并部署在Jeston nano的开源教程。它致力于让更多的大四学生毕业,以及让研一学生入门原创 2023-04-20 09:35:45 · 5184 阅读 · 4 评论 -
【双目视觉】 SGBM算法应用(Python版)
我们可以通过cv.remap()函数来将img2映射到img1对应位置上并合成。:重映射,即把一幅图像内的像素点放置到另外一幅图像内的指定位置,俗称“拼接”四种模式,它们的精度和速度呈反比,可根据情况来选择不同的模式.自制的标定数据集,必须用自己相机拍摄照片制作数据集。函数为opencv集成的算法;会降低精度,但提高速度。原创 2022-08-22 11:56:59 · 19477 阅读 · 33 评论 -
【双目视觉】 立体匹配算法原理之“代价空间与聚合、视差计算”
任意选取一个像素点,横向、纵向扩张,直到遇到颜色差异较大的地方才停下来。然后在扩张后的像素点,重复上述操作。这样,因为能及时发现边界,就能大概判断出。即我们发现在这条视差方向r上,纵轴(聚合后的代价)最小,那么我们就取出视差值(d=18)Bilateral filter就是输入的代价,乘以一个高斯函数,实现平滑。例如opencv收录的sgbm算法,就是计算了下面5条路径的代价。d是移动像素的大小。(AD, BT, Census, MI, …是该像素点左侧,最优代价。即当d=i时,左侧有最优代价,那么就。..原创 2022-08-10 10:04:06 · 2471 阅读 · 1 评论 -
【双目视觉】 立体匹配算法原理之“代价函数”
代价函数用于计算左、右图中两个像素之间的匹配代价(cost)。cost越大,表示这两个像素为对应点的可能性越低。原创 2022-08-09 16:20:54 · 2066 阅读 · 0 评论 -
【双目视觉】 理想条件下计算物体距离
本文主要推导了双目视觉中深度的计算原创 2022-07-16 10:58:27 · 1135 阅读 · 0 评论