论文
文章平均质量分 94
落叶随峰
菜鸡大学生一枚,感兴趣方向:C++,嵌入式,PCB设计,中间件,后端,视频语义分割等。
展开
-
Stereo-Detection:YOLO v5与双目测距结合,实现目标的识别和定位测距
Stereo-Detection 是一个传统的SGBM深度测距+yolov5目标检测,并部署在Jeston nano的开源教程。它致力于让更多的大四学生毕业,以及让研一学生入门原创 2023-04-20 09:35:45 · 4587 阅读 · 4 评论 -
AAAI 2023MOVEDepth:基于单目线索和速度指导的自监督多帧深度估计
MOVEDepth不再使用MonoDepth的decoder直接从cost volume中解码出深度,而是follow MVS领域的范式,从cost volume中回归得到深度,MOVEDepth认为显示利用cost volume能够最大程度保留几何信息,得到更准确的深度估计结果。然而如ManyDepth和DepthFormer中提到的,直接从cost volume回归出深度结果并不理想,这是因为在单目多帧深度估计领域,有很多“不确定因素”,例如相机静止(static frame),弱纹理、反光区域原创 2023-04-20 09:22:02 · 685 阅读 · 0 评论 -
ECCV 2022|DynamicDepth:动态场景下的多帧自监督深度估计
🏆本文别名DynamicDepth,如本文的名字所示,本文着重处理的就是**动态场景**下的多帧自监督深度估计问题。因为MVS在动态场景下会失效,所以在动态区域的多帧深度并不可靠。现在的已有方法例如ManyDepth,利用teacher-student网络结构,让多帧部分的网络在**不可信区域**向单帧部分的网络学习,但是所谓不可信区域的判断准则仅仅是依靠多帧深度和单帧深度的差异来计算的,不一定准确。所以DynamicDepth提出的核心论点就是显示地构建动态区域的优化。原创 2023-01-01 17:08:16 · 1709 阅读 · 0 评论 -
CVPR 2021|Deep-SfM-Revisited:DeepLearn+经典SfM流程
🏆前言:文章回顾了深度学习在SfM中的应用,并提出了一种新的深度两视图SfM框架。该框架结合了深度学习和经典SfM几何算法的优点。在各个数据集上取得较好的结果。原创 2022-12-30 13:20:05 · 1840 阅读 · 0 评论 -
CVPR 2017|SfMLearner:单目视频中深度和姿态估计的无监督算法
🏆作者提出了一个单目相机的视频序列进行深度估计与运动估计,作者的方法是完全无监督的,端到端的学习,作者使用了单视角深度网络和多姿态网络,提出了一个图像(predict)与真实的下一帧(goundturth)计算loss,作为无监督的依据,实现无监督学习。使用KITTI数据集证明了他们的有效性:1.合成的深度图与监督学习的方法是可比的;2. 在可比较的输入设置下,姿势估计与已建立的SLAM系统相比性能优越原创 2022-12-28 22:04:07 · 1839 阅读 · 3 评论 -
CVPR 2017|Deep Feature Flow for Video Recognition论文复现(pytorch版)
深度卷积神经网络在图像识别任务中取得了巨大的成功。然而,将最先进的图像识别网络转移到视频上并非易事,因为每帧评估速度太慢且负担不起。我们提出了一种快速准确的视频识别框架——深度特征流DFF。它只在稀疏关键帧上运行昂贵的卷积网络,并通过流场将其深度特征映射传播到其他帧。它实现了显著的加速,因为流计算相对较快。整个体系结构的端到端训练显著提高了识别精度。深度特征流是灵活和通用的。在目标检测和语义分割两个视频数据集上进行了验证。它极大地推进了视频识别任务的实践。原创 2022-12-27 19:56:19 · 1443 阅读 · 2 评论 -
CVPR 2019|APCNet:基于全局引导的局部匹配度自适应金字塔上下文网络
本篇论文发现了一种全局引导的局部匹配度(Global-guided Local Affinity (GLA))特征,用于构造上下文语义信息。基于此特性,作者设计了自适应上下文模块,构建自适应金字塔上下文网络(APCNet)。在不使用COCO数据集预训练模型的情况下,获得了2019年PASCAL VOC2012最高的分数84.2%原创 2022-12-08 23:51:41 · 737 阅读 · 0 评论 -
CVPR 2019|CFNet:语义分割中的共现特性
🏆本篇论文提出了Coocurrent Feature Model,该模型可以利用整体场景中共现特征,辅助预测目标特征。该模型在Pascal Context 达到54.0%mIOU,在Pascal VOC 2012和ADE20K分别达到87.2%以及44.89%mIOU。原创 2022-11-13 11:22:12 · 886 阅读 · 0 评论 -
图像分割经典论文调研:DeepLabV3、DeepLabV3+、DenseASPP
本文选取了三篇图像分割初期的经典论文:DeepLabV3、DeepLabV3+、DenseASPP,重点关注每篇论文要解决什么问题、针对性提出什么方法、为什么这个方法能解决这个问题原创 2022-11-03 20:56:08 · 2787 阅读 · 0 评论 -
图像分割经典论文调研:DilatedNet、DeepLabV2、HDC/DUC
引言:本文选取了三篇图像分割初期的经典论文:DilatedNet、DeepLabV2和HDC/DUC,重点关注每篇论文要解决什么问题、针对性提出什么方法、为什么这个方法能解决这个问题原创 2022-10-31 20:13:35 · 1353 阅读 · 0 评论 -
基于不同监督强度分类的语义分割综述:A Breif Survey on Semantic Segmentation with Deep Learning
语义分割是计算机视觉中一项具有挑战性的任务。近年来,深度学习技术的应用大大提高了语义分割的性能。人们提出了大量的新方法。本文旨在对基于深度学习的语义分割方法的研究进展进行简要综述。全文将该领域的研究按其监督程度进行了分类,即完全监督方法、弱监督方法和半监督方法。文章还讨论了当前研究的共同挑战,并提出了该领域的几个有价值的发展研究点。本综述旨在让读者了解深度学习时代语义分割研究的进展和面临的挑战。原创 2022-10-20 18:23:46 · 1528 阅读 · 1 评论