求积:
trapz(x,f(x)) 求积
sum(f(x)) 求和
trapz积分的原理:本质是多边形求和:
将点(x,0)和(x,y)视为多边形的顶点,并使用多边形区域计算面积。该方法与使用带有基点x的梯形规则对函数进行积分的近似值完全匹配。
求和原理:是多个小梯形求和,会多出三角形的部分。所以二者不相等。
极限求和才是积分。
误区:
∫
f
(
x
)
d
x
≠
∑
x
f
(
x
)
\int f(x)dx \neq \sum_x f(x)
∫f(x)dx=x∑f(x)
∫
f
(
x
)
d
x
=
lim
△
x
−
0
∑
△
x
f
(
△
x
)
\int f(x)dx = \lim_{\triangle x-0}\sum_{\triangle x} f(\triangle x)
∫f(x)dx=△x−0lim△x∑f(△x)
期望
E
=
∫
x
f
(
x
)
d
x
E=\int xf(x) dx
E=∫xf(x)dx