下述操作都是基于:tensorflow-2.15.0
安装命令: pip install -i https://mirrors.aliyun.com/pypi/simple tensorflow
python下载:https://registry.npmmirror.com/binary.html?path=python/3.9.13/

TensorFlow是用数据流图做计算的,因此需要先创建一个数据流图。以一个简单的回归模型为例,其中与模型有关的元素由输入(Input)、重塑(Reshape)、ReLU层(ReLU Layer)、Logit层(Logit Layer)、Softmax、交叉熵(Crossentropy)、梯度(Gradient)、SGD训练(SGD Trainer)等部分。计算过程:
- 输入
- 重塑
- ReLU层会有两个参数,即 W h 1 W_{h1} Wh1和 b h 1 b_{h1} bh1,在
输出前用ReLU激活函数做非线性处理。 - Logit层(输出),学习两个参数 W s m W_{sm} Wsm

本文介绍了TensorFlow的数据流图计算模型,包括重要概念如边、节点、Session、设备和变量。通过一个简单的回归模型例子展示了TensorFlow的计算流程,强调了数据依赖和操作的执行。文章还解释了如何使用Session执行图,以及如何指定设备和管理变量。最后,给出了实际的矩阵运算代码示例,演示了TensorFlow的运行过程。
最低0.47元/天 解锁文章
1344





